Chameleon

Chameleon Commit Details

Date:2010-07-24 21:00:03 (13 years 9 months ago)
Author:blackosx
Commit:223
Parents: 222
Message:Add remaining files that were missing from my last commit. (Hope it's all there now - Thanks Zef)
Changes:
A/branches/blackosx/artwork/themes/default/device_ext3_o.png
A/branches/blackosx/artwork/themes/default/device_cdrom_o.png
A/branches/blackosx/artwork/themes/default/device_hfsplus_o.png
A/branches/blackosx/i386/libsaio/aml_generator.c
A/branches/blackosx/artwork/themes/default/device_ntfs_o.png
A/branches/blackosx/artwork/themes/default/device_generic_o.png
A/branches/blackosx/i386/libsaio/acpi_patcher.c
A/branches/blackosx/i386/libsaio/aml_generator.h
A/branches/blackosx/artwork/themes/default/device_fat32_o.png
A/branches/blackosx/artwork/themes/default/device_fat16_o.png
A/branches/blackosx/i386/libsaio/acpi_patcher.h

File differences

branches/blackosx/i386/libsaio/acpi_patcher.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
/*
* Copyright 2008 mackerintel
*/
#include "libsaio.h"
#include "boot.h"
#include "bootstruct.h"
#include "acpi.h"
#include "efi_tables.h"
#include "fake_efi.h"
#include "acpi_patcher.h"
#include "platform.h"
#include "cpu.h"
#include "aml_generator.h"
#ifndef DEBUG_ACPI
#define DEBUG_ACPI 0
#endif
#if DEBUG_ACPI==2
#define DBG(x...) {printf(x); sleep(1);}
#elif DEBUG_ACPI==1
#define DBG(x...) printf(x)
#else
#define DBG(x...)
#endif
// Slice: New signature compare function
boolean_t tableSign(char *table, const char *sgn)
{
int i;
for (i=0; i<4; i++) {
if ((table[i] &~0x20) != (sgn[i] &~0x20)) {
return false;
}
}
return true;
}
/* Gets the ACPI 1.0 RSDP address */
static struct acpi_2_rsdp* getAddressOfAcpiTable()
{
/* TODO: Before searching the BIOS space we are supposed to search the first 1K of the EBDA */
void *acpi_addr = (void*)ACPI_RANGE_START;
for(; acpi_addr <= (void*)ACPI_RANGE_END; acpi_addr += 16)
{
if(*(uint64_t *)acpi_addr == ACPI_SIGNATURE_UINT64_LE)
{
uint8_t csum = checksum8(acpi_addr, 20);
if(csum == 0)
{
// Only return the table if it is a true version 1.0 table (Revision 0)
if(((struct acpi_2_rsdp*)acpi_addr)->Revision == 0)
return acpi_addr;
}
}
}
return NULL;
}
/* Gets the ACPI 2.0 RSDP address */
static struct acpi_2_rsdp* getAddressOfAcpi20Table()
{
/* TODO: Before searching the BIOS space we are supposed to search the first 1K of the EBDA */
void *acpi_addr = (void*)ACPI_RANGE_START;
for(; acpi_addr <= (void*)ACPI_RANGE_END; acpi_addr += 16)
{
if(*(uint64_t *)acpi_addr == ACPI_SIGNATURE_UINT64_LE)
{
uint8_t csum = checksum8(acpi_addr, 20);
/* Only assume this is a 2.0 or better table if the revision is greater than 0
* NOTE: ACPI 3.0 spec only seems to say that 1.0 tables have revision 1
* and that the current revision is 2.. I am going to assume that rev > 0 is 2.0.
*/
if(csum == 0 && (((struct acpi_2_rsdp*)acpi_addr)->Revision > 0))
{
uint8_t csum2 = checksum8(acpi_addr, sizeof(struct acpi_2_rsdp));
if(csum2 == 0)
return acpi_addr;
}
}
}
return NULL;
}
/** The folowing ACPI Table search algo. should be reused anywhere needed:*/
int search_and_get_acpi_fd(const char * filename, const char ** outDirspec)
{
int fd=0;
const char * overriden_pathname=NULL;
static char dirspec[512]="";
static bool first_time =true;
int len=0;
/// Take in accound user overriding if it's DSDT only
if (strstr(filename, "DSDT") &&
getValueForKey(kDSDT, &overriden_pathname, &len,
&bootInfo->bootConfig))
{
sprintf(dirspec, "%s", overriden_pathname);
fd=open (dirspec,0);
if (fd>=0) goto success_fd;
}
// Check that dirspec is not already assigned with a path
if (!first_time && *dirspec)
{ // it is so start searching this cached patch first
//extract path
for (len=strlen(dirspec)-1; len; len--)
if (dirspec[len]=='/' || len==0)
{
dirspec[len]='\0';
break;
}
// now concat with the filename
strncat(dirspec, "/", sizeof(dirspec));
strncat(dirspec, filename, sizeof(dirspec));
// and test to see if we don't have our big boy here:
fd=open (dirspec,0);
if (fd>=0)
{
// printf("ACPI file search cache hit: file found at %s\n", dirspec);
goto success_fd;
}
}
// Start searching any potential location for ACPI Table
// search the Extra folders first
sprintf(dirspec,"/Extra/%s",filename);
fd=open (dirspec,0);
if (fd>=0) goto success_fd;
sprintf(dirspec,"bt(0,0)/Extra/%s",filename);
fd=open (dirspec,0);
if (fd>=0) goto success_fd;
sprintf(dirspec, "%s", filename); // search current dir
fd=open (dirspec,0);
if (fd>=0) goto success_fd;
sprintf(dirspec, "/%s", filename); // search root
fd=open (dirspec,0);
if (fd>=0) goto success_fd;
// NOT FOUND:
//verbose("ACPI Table not found: %s\n", filename);
if (outDirspec) *outDirspec = "";
first_time = false;
return -1;
// FOUND
success_fd:
first_time = false;
if (outDirspec) *outDirspec = dirspec;
return fd;
}
void *loadACPITable (const char * filename)
{
void *tableAddr;
const char * dirspec=NULL;
int fd = search_and_get_acpi_fd(filename, &dirspec);
if (fd>=0)
{
tableAddr=(void*)AllocateKernelMemory(file_size (fd));
if (tableAddr)
{
if (read (fd, tableAddr, file_size (fd))!=file_size (fd))
{
printf("Couldn't read table %s\n",dirspec);
free (tableAddr);
close (fd);
return NULL;
}
DBG("Table %s read and stored at: %x\n", dirspec, tableAddr);
close (fd);
return tableAddr;
}
close (fd);
printf("Couldn't allocate memory for table \n", dirspec);
}
//printf("Couldn't find table %s\n", filename);
return NULL;
}
uint8_tacpi_cpu_count = 0;
char* acpi_cpu_name[32];
void find_acpi_cpu_names(unsigned char* dsdt, int length)
{
int i;
for (i=0; i<length-7; i++)
{
if (dsdt[i] == 0x5B && dsdt[i+1] == 0x83) // ProcessorOP
{
uint8_t offset = i+2+(dsdt[i+2] >> 6) + 1, j;
bool add_name = true;
for (j=0; j<4; j++)
{
char c = dsdt[offset+j];
if (!aml_isvalidchar(c))
{
add_name = false;
verbose("Invalid characters found in ProcessorOP!\n");
break;
}
}
if (add_name && dsdt[offset+5] < 32 )
{
acpi_cpu_name[acpi_cpu_count] = malloc(5);
memcpy(acpi_cpu_name[acpi_cpu_count], dsdt+offset, 4);
verbose("Found %c%c%c%c (from DSDT)\n", acpi_cpu_name[acpi_cpu_count][0], acpi_cpu_name[acpi_cpu_count][1], acpi_cpu_name[acpi_cpu_count][2], acpi_cpu_name[acpi_cpu_count][3]);
if (++acpi_cpu_count == 32) return;
}
}
}
}
struct acpi_2_ssdt *generate_cst_ssdt(struct acpi_2_fadt* fadt)
{
char ssdt_header[] =
{
0x53, 0x53, 0x44, 0x54, 0xE7, 0x00, 0x00, 0x00, /* SSDT.... */
0x01, 0x17, 0x50, 0x6D, 0x52, 0x65, 0x66, 0x41, /* ..PmRefA */
0x43, 0x70, 0x75, 0x43, 0x73, 0x74, 0x00, 0x00, /* CpuCst.. */
0x00, 0x10, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* ....INTL */
0x31, 0x03, 0x10, 0x20 /* 1.._*/
};
char chunk_name_body[] =
{
0x5C, 0x5F, 0x50, 0x52, 0x5F, 0x08, 0x43, 0x53, /* \_PR_.CS */
0x54, 0x5F/* T_*/
};
char chunk_c1[] =
{
0x12, 0x1C, 0x04, 0x11, 0x14, 0x0A, 0x11, 0x82,
0x0C, 0x00, 0x7F, 0x01, 0x02, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x00,
0x01, 0x01, 0x0B, 0xE8, 0x03
};
char chunk_c2[] =
{
0x12, 0x1E, 0x04, 0x11, 0x14, 0x0A, 0x11, 0x82,
0x0C, 0x00, 0x7F, 0x01, 0x02, 0x01, 0x10, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x00,
0x0A, 0x02, 0x0A, 0x40, 0x0B, 0xF4, 0x01
};
char chunk_c3[] =
{
0x12, 0x1F, 0x04, 0x11, 0x14, 0x0A, 0x11, 0x82,
0x0C, 0x00, 0x7F, 0x01, 0x02, 0x01, 0x20, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x00,
0x0A, 0x03, 0x0B, 0x60, 0x03, 0x0B, 0x5E, 0x01
};
char chunk_alias[] =
{
0x10, 0x14, 0x5C, 0x2E, 0x5F, 0x50, 0x52, 0x5F, /* ..\._PR_ */
0x43, 0x50, 0x55, 0x30, 0x06, 0x43, 0x53, 0x54, /* CPU0.CST */
0x5F, 0x5F, 0x43, 0x53, 0x54/* __CST*/
};
if (fadt == NULL) {
verbose ("FACP not exists: C-States not generated !!!\n");
return NULL;
}
struct acpi_2_dsdt* dsdt = (void*)fadt->DSDT;
if (dsdt == NULL) {
verbose ("DSDT not found: C-States not generated !!!\n");
return NULL;
}
if (acpi_cpu_count == 0)
find_acpi_cpu_names((void*)dsdt, dsdt->Length);
if (acpi_cpu_count > 0) {
bool c2_enabled = fadt->C2_Latency < 100, c3_enabled = fadt->C3_Latency < 1000;
// Setup C2 Latency
if (c2_enabled)
chunk_c2[27] = fadt->C2_Latency & 0xff;
// Setup C3 Latency
if (c3_enabled) {
chunk_c3[27] = fadt->C3_Latency & 0xff;
chunk_c3[28] = (fadt->C3_Latency >> 8) & 0xff;
}
// Generating SSDT
uint32_t package_length =
4 +
sizeof(chunk_c1) +
c2_enabled * sizeof(chunk_c2) +
c3_enabled * sizeof(chunk_c3);
if (package_length > 0x3f)
package_length++;
uint32_t name_length =
1 +
sizeof(chunk_name_body) +
1 + package_length;
if (name_length > 0x3f)
name_length++;
uint32_t ssdt_size =
sizeof(ssdt_header) +
1 + name_length +
acpi_cpu_count * sizeof(chunk_alias);
struct acpi_2_ssdt *ssdt = (void*)AllocateKernelMemory(ssdt_size);
int fd = openmem((char*)ssdt, ssdt_size);
// Header
write(fd, ssdt_header, sizeof(ssdt_header));
// Scope (\_PR) { Name (CST
writebyte(fd, 0x10); // id
if (name_length > 0x3f)
{
writebyte(fd, 0x40 | (name_length & 0xf)); // lo half-byte
writebyte(fd, name_length >> 4); // hi byte
}
else
{
writebyte(fd, name_length); // length
}
write(fd, chunk_name_body, sizeof(chunk_name_body));
//Package (0x04) { 0x03,
writebyte(fd, 0x12); // id
if (package_length > 0x3f)
{
writebyte(fd, 0x40 | (package_length & 0xf)); // lo half-byte
writebyte(fd, package_length >> 4); // hi byte
}
else
{
writebyte(fd, package_length); // length
}
uint8_t cstates_count = 1 + c2_enabled + c3_enabled;
writebyte(fd, cstates_count + 1);
writebyte(fd, 0x0A); // first entry - number of c-states
writebyte(fd, cstates_count);
// C1
write(fd, chunk_c1, sizeof(chunk_c1));
// C2
if (c2_enabled)
write(fd, chunk_c2, sizeof(chunk_c2));
// C3
if (c3_enabled)
write(fd, chunk_c3, sizeof(chunk_c3));
// Write aliases
int i;
for (i = 0; i < acpi_cpu_count; i++) {
int j;
for (j = 0; j < 4; j++)
chunk_alias[8+j] = acpi_cpu_name[i][j];
write(fd, chunk_alias, sizeof(chunk_alias));
}
close(fd);
ssdt->Length = ssdt_size;
ssdt->Checksum = 0;
ssdt->Checksum = 256 - checksum8(ssdt, ssdt->Length);
//dumpPhysAddr("C-States SSDT content: ", ssdt, ssdt_size);
verbose ("SSDT with CPU C-States generated successfully\n");
return ssdt;
}
else {
verbose ("DSDT CPUs not found: C-States not generated !!!\n");
}
return NULL;
}
struct acpi_2_ssdt *generate_pss_ssdt(struct acpi_2_dsdt* dsdt)
{
char ssdt_header[] =
{
0x53, 0x53, 0x44, 0x54, 0x7E, 0x00, 0x00, 0x00, /* SSDT.... */
0x01, 0x6A, 0x50, 0x6D, 0x52, 0x65, 0x66, 0x00, /* ..PmRef. */
0x43, 0x70, 0x75, 0x50, 0x6D, 0x00, 0x00, 0x00, /* CpuPm... */
0x00, 0x30, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* .0..INTL */
0x31, 0x03, 0x10, 0x20,/* 1.._*/
};
char chunk_name_body[] =
{
0x5C, 0x5F, 0x50, 0x52, 0x5F, 0x08, 0x50, 0x53, /* \_PR_.PS */
0x53, 0x5F/* S_*/
};
char chunk_alias[] =
{
0x10, 0x14, 0x5C, 0x2E, 0x5F, 0x50, 0x52, 0x5F, /* ..\._PR_ */
0x43, 0x50, 0x55, 0x30, 0x06, 0x50, 0x53, 0x53, /* CPU0.PSS */
0x5F, 0x5F, 0x50, 0x53, 0x53/* __PSS*/
};
if (Platform.CPU.Vendor != 0x756E6547) {
verbose ("Not an Intel platform: P-States will not be generated !!!\n");
return NULL;
}
if (!(Platform.CPU.Features & CPU_FEATURE_MSR)) {
verbose ("Unsupported CPU: P-States will not be generated !!!\n");
return NULL;
}
if (acpi_cpu_count == 0)
find_acpi_cpu_names((void*)dsdt, dsdt->Length);
if (acpi_cpu_count > 0)
{
bool cpu_dynamic_fsb = false, cpu_noninteger_bus_ratio = (rdmsr64(MSR_IA32_PERF_STATUS) & (1ULL << 46));
struct p_state initial, maximum, minimum, p_states[32];
uint8_t p_states_count;
// Retrieving P-States, ported from code by superhai (c)
switch (Platform.CPU.Family) {
case 0x06:
{
switch (Platform.CPU.Model)
{
case 0x0F: // Intel Core (65nm)
case 0x17: // Intel Core (45nm)
case 0x1C: // Intel Atom (45nm)
case 0x1A: // Intel Core i7 LGA1366 (45nm)
case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
if (rdmsr64(MSR_IA32_EXT_CONFIG) & (1 << 27))
{
wrmsr64(MSR_IA32_EXT_CONFIG, (rdmsr64(MSR_IA32_EXT_CONFIG) | (1 << 28)));
delay(1);
cpu_dynamic_fsb = rdmsr64(MSR_IA32_EXT_CONFIG) & (1 << 28);
}
break;
}
}
}
initial.Control = rdmsr64(MSR_IA32_PERF_STATUS);
maximum.Control = ((rdmsr64(MSR_IA32_PERF_STATUS) >> 32) & 0x1F3F) | (0x4000 * cpu_noninteger_bus_ratio);
maximum.CID = ((maximum.FID & 0x1F) << 1) | cpu_noninteger_bus_ratio;
minimum.FID = ((rdmsr64(MSR_IA32_PERF_STATUS) >> 24) & 0x1F) | (0x80 * cpu_dynamic_fsb);
minimum.VID = ((rdmsr64(MSR_IA32_PERF_STATUS) >> 48) & 0x3F);
if (minimum.FID == 0)
{
uint8_t i;
// Probe for lowest fid
for (i = maximum.FID; i >= 0x6; i--)
{
wrmsr64(MSR_IA32_PERF_CONTROL, (rdmsr64(MSR_IA32_PERF_CONTROL) & 0xFFFFFFFFFFFF0000ULL) | (i << 8) | minimum.VID);
intel_waitforsts();
minimum.FID = (rdmsr64(MSR_IA32_PERF_STATUS) >> 8) & 0x1F;
delay(1);
}
wrmsr64(MSR_IA32_PERF_CONTROL, (rdmsr64(MSR_IA32_PERF_CONTROL) & 0xFFFFFFFFFFFF0000ULL) | (maximum.FID << 8) | maximum.VID);
intel_waitforsts();
}
if (minimum.VID == maximum.VID)
{
uint8_t i;
// Probe for lowest vid
for (i = maximum.VID; i > 0xA; i--)
{
wrmsr64(MSR_IA32_PERF_CONTROL, (rdmsr64(MSR_IA32_PERF_CONTROL) & 0xFFFFFFFFFFFF0000ULL) | (minimum.FID << 8) | i);
intel_waitforsts();
minimum.VID = rdmsr64(MSR_IA32_PERF_STATUS) & 0x3F;
delay(1);
}
wrmsr64(MSR_IA32_PERF_CONTROL, (rdmsr64(MSR_IA32_PERF_CONTROL) & 0xFFFFFFFFFFFF0000ULL) | (maximum.FID << 8) | maximum.VID);
intel_waitforsts();
}
minimum.CID = ((minimum.FID & 0x1F) << 1) >> cpu_dynamic_fsb;
// Sanity check
if (maximum.CID < minimum.CID)
{
DBG("Insane FID values!");
p_states_count = 1;
}
else
{
// Finalize P-States
// Find how many P-States machine supports
p_states_count = maximum.CID - minimum.CID + 1;
if (p_states_count > 32)
p_states_count = 32;
uint8_t vidstep;
uint8_t i = 0, u, invalid = 0;
vidstep = ((maximum.VID << 2) - (minimum.VID << 2)) / (p_states_count - 1);
for (u = 0; u < p_states_count; u++)
{
i = u - invalid;
p_states[i].CID = maximum.CID - u;
p_states[i].FID = (p_states[i].CID >> 1);
if (p_states[i].FID < 0x6)
{
if (cpu_dynamic_fsb)
p_states[i].FID = (p_states[i].FID << 1) | 0x80;
}
else if (cpu_noninteger_bus_ratio)
{
p_states[i].FID = p_states[i].FID | (0x40 * (p_states[i].CID & 0x1));
}
if (i && p_states[i].FID == p_states[i-1].FID)
invalid++;
p_states[i].VID = ((maximum.VID << 2) - (vidstep * u)) >> 2;
uint32_t multiplier = p_states[i].FID & 0x1f;// = 0x08
bool half = p_states[i].FID & 0x40;// = 0x01
bool dfsb = p_states[i].FID & 0x80;// = 0x00
uint32_t fsb = Platform.CPU.FSBFrequency / 1000000; // = 400
uint32_t halffsb = (fsb + 1) >> 1;// = 200
uint32_t frequency = (multiplier * fsb);// = 3200
p_states[i].Frequency = (frequency + (half * halffsb)) >> dfsb;// = 3200 + 200 = 3400
}
p_states_count -= invalid;
}
// Generating SSDT
if (p_states_count > 0)
{
uint32_t i, pss_entries_size = 33 * p_states_count, pss_package_length = pss_entries_size + 2;
if (pss_package_length > 0x3f) pss_package_length++; // for chunks > 0x3f bytes length have 2 bytes encoding
uint32_t pss_name_length = (1 /* id=0x12 */ + pss_package_length) + (1 + 10);
if (pss_name_length > 0x3f) pss_name_length++;
uint32_t ssdt_size = 36 + (1 /* id=0x10 */ + pss_name_length) + acpi_cpu_count * sizeof(chunk_alias);
struct acpi_2_ssdt *ssdt = (void*)AllocateKernelMemory(ssdt_size);
int fd = openmem((char*)ssdt, ssdt_size);
// write header
write(fd, ssdt_header, sizeof(ssdt_header));
// write Scope (\_PR) {Name (PSS, ...
writebyte(fd, 0x10); // id
if (pss_name_length > 0x3f)
{
writebyte(fd, 0x40 | (pss_name_length & 0xf)); // lo half-byte
writebyte(fd, pss_name_length >> 4); // hi byte
}
else
{
writebyte(fd, pss_name_length); // length
}
write(fd, chunk_name_body, sizeof(chunk_name_body));
// write Package(p_states_count) { ...
writebyte(fd, 0x12); // id
if (pss_package_length > 0x3f)
{
writebyte(fd, 0x40 | (pss_package_length & 0xf)); // lo half-byte
writebyte(fd, pss_package_length >> 4); // hi byte
}
else
{
writebyte(fd, pss_package_length); // length
}
writebyte(fd, p_states_count); // entries
for (i = 0; i < p_states_count; i++)
{
DBG("P-State: Frequency %d MHz, FID 0x%x, VID 0x%x\n", p_states[i].Frequency, p_states[i].FID, p_states[i].VID);
writebyte(fd, 0x12); // chunk id
writebyte(fd, 32); // chunk length without id
writebyte(fd, 6); // entries
writebyte(fd, 0x0C); /* id */ writeint(fd, p_states[i].Frequency); // value
writebyte(fd, 0x0C); /* id */ writeint(fd, 0x00000000); // value
writebyte(fd, 0x0C); /* id */ writeint(fd, 0x0000000A); // value
writebyte(fd, 0x0C); /* id */ writeint(fd, 0x0000000A); // value
writebyte(fd, 0x0C); /* id */ writeint(fd, p_states[i].Control); // value
writebyte(fd, 0x0C); /* id */ writeint(fd, i + 1); // value
}
// Write aliases
for (i = 0; i < acpi_cpu_count; i++) {
int j;
for (j = 0; j < 4; j++)
chunk_alias[8+j] = acpi_cpu_name[i][j];
write(fd, chunk_alias, sizeof(chunk_alias));
}
ssdt->Length = ssdt_size;
ssdt->Checksum = 0;
ssdt->Checksum = 256 - checksum8(ssdt, ssdt->Length);
//dumpPhysAddr("P-States SSDT content: ", ssdt, ssdt_size);
verbose ("SSDT with CPU P-States generated successfully\n");
return ssdt;
}
}
else {
verbose ("DSDT CPUs not found: P-States not generated !!!\n");
}
return NULL;
}
struct acpi_2_fadt *patch_fadt(struct acpi_2_fadt *fadt, struct acpi_2_dsdt *new_dsdt)
{
extern void setupSystemType();
struct acpi_2_fadt *fadt_mod;
bool fadt_rev2_needed = false;
bool fix_restart;
const char * value;
// Restart Fix
if (Platform.CPU.Vendor == 0x756E6547) {/* Intel */
fix_restart = true;
getBoolForKey(kRestartFix, &fix_restart, &bootInfo->bootConfig);
} else {
verbose ("Not an Intel platform: Restart Fix not applied !!!\n");
fix_restart = false;
}
if (fix_restart) fadt_rev2_needed = true;
// Allocate new fadt table
if (fadt->Length < 0x84 && fadt_rev2_needed)
{
fadt_mod=(struct acpi_2_fadt *)AllocateKernelMemory(0x84);
memcpy(fadt_mod, fadt, fadt->Length);
fadt_mod->Length = 0x84;
fadt_mod->Revision = 0x02; // FADT rev 2 (ACPI 1.0B MS extensions)
}
else
{
fadt_mod=(struct acpi_2_fadt *)AllocateKernelMemory(fadt->Length);
memcpy(fadt_mod, fadt, fadt->Length);
}
// Determine system type / PM_Model
if ( (value=getStringForKey(kSystemType, &bootInfo->bootConfig))!=NULL)
{
if (Platform.Type > 6)
{
if(fadt_mod->PM_Profile<=6)
Platform.Type = fadt_mod->PM_Profile; // get the fadt if correct
else
Platform.Type = 1;/* Set a fixed value (Desktop) */
verbose("Error: system-type must be 0..6. Defaulting to %d !\n", Platform.Type);
}
else
Platform.Type = (unsigned char) strtoul(value, NULL, 10);
}
// Set PM_Profile from System-type if only if user wanted this value to be forced
if (fadt_mod->PM_Profile != Platform.Type)
{
if (value)
{ // user has overriden the SystemType so take care of it in FACP
verbose("FADT: changing PM_Profile from 0x%02x to 0x%02x\n", fadt_mod->PM_Profile, Platform.Type);
fadt_mod->PM_Profile = Platform.Type;
}
else
{ // PM_Profile has a different value and no override has been set, so reflect the user value to ioregs
Platform.Type = fadt_mod->PM_Profile <= 6 ? fadt_mod->PM_Profile : 1;
}
}
// We now have to write the systemm-type in ioregs: we cannot do it before in setupDeviceTree()
// because we need to take care of facp original content, if it is correct.
setupSystemType();
// Patch FADT to fix restart
if (fix_restart)
{
fadt_mod->Flags|= 0x400;
fadt_mod->Reset_SpaceID= 0x01; // System I/O
fadt_mod->Reset_BitWidth= 0x08; // 1 byte
fadt_mod->Reset_BitOffset= 0x00; // Offset 0
fadt_mod->Reset_AccessWidth= 0x01; // Byte access
fadt_mod->Reset_Address= 0x0cf9; // Address of the register
fadt_mod->Reset_Value= 0x06; // Value to write to reset the system
verbose("FADT: Restart Fix applied!\n");
}
// Patch DSDT Address if we have loaded DSDT.aml
if(new_dsdt)
{
DBG("DSDT: Old @%x,%x, ",fadt_mod->DSDT,fadt_mod->X_DSDT);
fadt_mod->DSDT=(uint32_t)new_dsdt;
if ((uint32_t)(&(fadt_mod->X_DSDT))-(uint32_t)fadt_mod+8<=fadt_mod->Length)
fadt_mod->X_DSDT=(uint32_t)new_dsdt;
DBG("New @%x,%x\n",fadt_mod->DSDT,fadt_mod->X_DSDT);
verbose("FADT: Using custom DSDT!\n");
}
// Correct the checksum
fadt_mod->Checksum=0;
fadt_mod->Checksum=256-checksum8(fadt_mod,fadt_mod->Length);
return fadt_mod;
}
/* Setup ACPI without replacing DSDT. */
int setupAcpiNoMod()
{
//addConfigurationTable(&gEfiAcpiTableGuid, getAddressOfAcpiTable(), "ACPI");
//addConfigurationTable(&gEfiAcpi20TableGuid, getAddressOfAcpi20Table(), "ACPI_20");
/* XXX aserebln why uint32 cast if pointer is uint64 ? */
acpi10_p = (uint32_t)getAddressOfAcpiTable();
acpi20_p = (uint32_t)getAddressOfAcpi20Table();
addConfigurationTable(&gEfiAcpiTableGuid, &acpi10_p, "ACPI");
if(acpi20_p) addConfigurationTable(&gEfiAcpi20TableGuid, &acpi20_p, "ACPI_20");
return 1;
}
/* Setup ACPI. Replace DSDT if DSDT.aml is found */
int setupAcpi(void)
{
int version;
void *new_dsdt;
// Load replacement DSDT
new_dsdt=loadACPITable("DSDT.aml");
// Mozodojo: going to patch FACP and load SSDT's even if DSDT.aml is not present
/*if (!new_dsdt)
{
return setupAcpiNoMod();
}*/
// Mozodojo: Load additional SSDTs
struct acpi_2_ssdt *new_ssdt[32]; // 30 + 2 additional tables for pss & cst
int ssdt_count=0;
// SSDT Options
bool drop_ssdt=false, generate_pstates=false, generate_cstates=false;
getBoolForKey(kDropSSDT, &drop_ssdt, &bootInfo->bootConfig);
getBoolForKey(kGeneratePStates, &generate_pstates, &bootInfo->bootConfig);
getBoolForKey(kGenerateCStates, &generate_cstates, &bootInfo->bootConfig);
{
int i;
for (i=0; i<30; i++)
{
char filename[512];
sprintf(filename, i>0?"SSDT-%d.aml":"SSDT.aml", i);
if(new_ssdt[ssdt_count] = loadACPITable(filename))
{
ssdt_count++;
}
else
{
break;
}
}
}
// Do the same procedure for both versions of ACPI
for (version=0; version<2; version++) {
struct acpi_2_rsdp *rsdp, *rsdp_mod;
struct acpi_2_rsdt *rsdt, *rsdt_mod;
int rsdplength;
// Find original rsdp
rsdp=(struct acpi_2_rsdp *)(version?getAddressOfAcpi20Table():getAddressOfAcpiTable());
if (!rsdp)
{
DBG("No ACPI version %d found. Ignoring\n", version+1);
if (version)
addConfigurationTable(&gEfiAcpi20TableGuid, NULL, "ACPI_20");
else
addConfigurationTable(&gEfiAcpiTableGuid, NULL, "ACPI");
continue;
}
rsdplength=version?rsdp->Length:20;
DBG("RSDP version %d found @%x. Length=%d\n",version+1,rsdp,rsdplength);
/* FIXME: no check that memory allocation succeeded
* Copy and patch RSDP,RSDT, XSDT and FADT
* For more info see ACPI Specification pages 110 and following
*/
rsdp_mod=(struct acpi_2_rsdp *) AllocateKernelMemory(rsdplength);
memcpy(rsdp_mod, rsdp, rsdplength);
rsdt=(struct acpi_2_rsdt *)(rsdp->RsdtAddress);
DBG("RSDT @%x, Length %d\n",rsdt, rsdt->Length);
if (rsdt && (uint32_t)rsdt !=0xffffffff && rsdt->Length<0x10000)
{
uint32_t *rsdt_entries;
int rsdt_entries_num;
int dropoffset=0, i;
// mozo: using malloc cos I didn't found how to free already allocated kernel memory
rsdt_mod=(struct acpi_2_rsdt *)malloc(rsdt->Length);
memcpy (rsdt_mod, rsdt, rsdt->Length);
rsdp_mod->RsdtAddress=(uint32_t)rsdt_mod;
rsdt_entries_num=(rsdt_mod->Length-sizeof(struct acpi_2_rsdt))/4;
rsdt_entries=(uint32_t *)(rsdt_mod+1);
for (i=0;i<rsdt_entries_num;i++)
{
char *table=(char *)(rsdt_entries[i]);
if (!table)
continue;
DBG("TABLE %c%c%c%c,",table[0],table[1],table[2],table[3]);
rsdt_entries[i-dropoffset]=rsdt_entries[i];
if (drop_ssdt && tableSign(table, "SSDT"))
{
dropoffset++;
continue;
}
if (tableSign(table, "DSDT"))
{
DBG("DSDT found\n");
if(new_dsdt)
rsdt_entries[i-dropoffset]=(uint32_t)new_dsdt;
continue;
}
if (tableSign(table, "FACP"))
{
struct acpi_2_fadt *fadt, *fadt_mod;
fadt=(struct acpi_2_fadt *)rsdt_entries[i];
DBG("FADT found @%x, Length %d\n",fadt, fadt->Length);
if (!fadt || (uint32_t)fadt == 0xffffffff || fadt->Length>0x10000)
{
printf("FADT incorrect. Not modified\n");
continue;
}
fadt_mod = patch_fadt(fadt, new_dsdt);
rsdt_entries[i-dropoffset]=(uint32_t)fadt_mod;
// Generate _CST SSDT
if (generate_cstates && (new_ssdt[ssdt_count] = generate_cst_ssdt(fadt_mod)))
{
generate_cstates = false; // Generate SSDT only once!
ssdt_count++;
}
// Generating _PSS SSDT
if (generate_pstates && (new_ssdt[ssdt_count] = generate_pss_ssdt((void*)fadt_mod->DSDT)))
{
generate_pstates = false; // Generate SSDT only once!
ssdt_count++;
}
continue;
}
}
DBG("\n");
// Allocate rsdt in Kernel memory area
rsdt_mod->Length += 4*ssdt_count - 4*dropoffset;
struct acpi_2_rsdt *rsdt_copy = (struct acpi_2_rsdt *)AllocateKernelMemory(rsdt_mod->Length);
memcpy (rsdt_copy, rsdt_mod, rsdt_mod->Length);
free(rsdt_mod); rsdt_mod = rsdt_copy;
rsdp_mod->RsdtAddress=(uint32_t)rsdt_mod;
rsdt_entries_num=(rsdt_mod->Length-sizeof(struct acpi_2_rsdt))/4;
rsdt_entries=(uint32_t *)(rsdt_mod+1);
// Mozodojo: Insert additional SSDTs into RSDT
if(ssdt_count>0)
{
int j;
for (j=0; j<ssdt_count; j++)
rsdt_entries[i-dropoffset+j]=(uint32_t)new_ssdt[j];
verbose("RSDT: Added %d SSDT table(s)\n", ssdt_count);
}
// Correct the checksum of RSDT
DBG("RSDT: Original checksum %d, ", rsdt_mod->Checksum);
rsdt_mod->Checksum=0;
rsdt_mod->Checksum=256-checksum8(rsdt_mod,rsdt_mod->Length);
DBG("New checksum %d at %x\n", rsdt_mod->Checksum,rsdt_mod);
}
else
{
rsdp_mod->RsdtAddress=0;
printf("RSDT not found or RSDT incorrect\n");
}
if (version)
{
struct acpi_2_xsdt *xsdt, *xsdt_mod;
// FIXME: handle 64-bit address correctly
xsdt=(struct acpi_2_xsdt*) ((uint32_t)rsdp->XsdtAddress);
DBG("XSDT @%x;%x, Length=%d\n", (uint32_t)(rsdp->XsdtAddress>>32),(uint32_t)rsdp->XsdtAddress,
xsdt->Length);
if (xsdt && (uint64_t)rsdp->XsdtAddress<0xffffffff && xsdt->Length<0x10000)
{
uint64_t *xsdt_entries;
int xsdt_entries_num, i;
int dropoffset=0;
// mozo: using malloc cos I didn't found how to free already allocated kernel memory
xsdt_mod=(struct acpi_2_xsdt*)malloc(xsdt->Length);
memcpy(xsdt_mod, xsdt, xsdt->Length);
rsdp_mod->XsdtAddress=(uint32_t)xsdt_mod;
xsdt_entries_num=(xsdt_mod->Length-sizeof(struct acpi_2_xsdt))/8;
xsdt_entries=(uint64_t *)(xsdt_mod+1);
for (i=0;i<xsdt_entries_num;i++)
{
char *table=(char *)((uint32_t)(xsdt_entries[i]));
if (!table)
continue;
xsdt_entries[i-dropoffset]=xsdt_entries[i];
if (drop_ssdt && tableSign(table, "SSDT"))
{
dropoffset++;
continue;
}
if (tableSign(table, "DSDT"))
{
DBG("DSDT found\n");
if (new_dsdt)
xsdt_entries[i-dropoffset]=(uint32_t)new_dsdt;
DBG("TABLE %c%c%c%c@%x,",table[0],table[1],table[2],table[3],xsdt_entries[i]);
continue;
}
if (tableSign(table, "FACP"))
{
struct acpi_2_fadt *fadt, *fadt_mod;
fadt=(struct acpi_2_fadt *)(uint32_t)xsdt_entries[i];
DBG("FADT found @%x,%x, Length %d\n",(uint32_t)(xsdt_entries[i]>>32),fadt,
fadt->Length);
if (!fadt || (uint64_t)xsdt_entries[i] >= 0xffffffff || fadt->Length>0x10000)
{
verbose("FADT incorrect or after 4GB. Dropping XSDT\n");
goto drop_xsdt;
}
fadt_mod = patch_fadt(fadt, new_dsdt);
xsdt_entries[i-dropoffset]=(uint32_t)fadt_mod;
DBG("TABLE %c%c%c%c@%x,",table[0],table[1],table[2],table[3],xsdt_entries[i]);
// Generate _CST SSDT
if (generate_cstates && (new_ssdt[ssdt_count] = generate_cst_ssdt(fadt_mod)))
{
generate_cstates = false; // Generate SSDT only once!
ssdt_count++;
}
// Generating _PSS SSDT
if (generate_pstates && (new_ssdt[ssdt_count] = generate_pss_ssdt((void*)fadt_mod->DSDT)))
{
generate_pstates = false; // Generate SSDT only once!
ssdt_count++;
}
continue;
}
DBG("TABLE %c%c%c%c@%x,",table[0],table[1],table[2],table[3],xsdt_entries[i]);
}
// Allocate xsdt in Kernel memory area
xsdt_mod->Length += 8*ssdt_count - 8*dropoffset;
struct acpi_2_xsdt *xsdt_copy = (struct acpi_2_xsdt *)AllocateKernelMemory(xsdt_mod->Length);
memcpy(xsdt_copy, xsdt_mod, xsdt_mod->Length);
free(xsdt_mod); xsdt_mod = xsdt_copy;
rsdp_mod->XsdtAddress=(uint32_t)xsdt_mod;
xsdt_entries_num=(xsdt_mod->Length-sizeof(struct acpi_2_xsdt))/8;
xsdt_entries=(uint64_t *)(xsdt_mod+1);
// Mozodojo: Insert additional SSDTs into XSDT
if(ssdt_count>0)
{
int j;
for (j=0; j<ssdt_count; j++)
xsdt_entries[i-dropoffset+j]=(uint32_t)new_ssdt[j];
verbose("Added %d SSDT table(s) into XSDT\n", ssdt_count);
}
// Correct the checksum of XSDT
xsdt_mod->Checksum=0;
xsdt_mod->Checksum=256-checksum8(xsdt_mod,xsdt_mod->Length);
}
else
{
drop_xsdt:
DBG("About to drop XSDT\n");
/*FIXME: Now we just hope that if MacOS doesn't find XSDT it reverts to RSDT.
* A Better strategy would be to generate
*/
rsdp_mod->XsdtAddress=0xffffffffffffffffLL;
verbose("XSDT not found or XSDT incorrect\n");
}
}
// Correct the checksum of RSDP
DBG("RSDP: Original checksum %d, ", rsdp_mod->Checksum);
rsdp_mod->Checksum=0;
rsdp_mod->Checksum=256-checksum8(rsdp_mod,20);
DBG("New checksum %d\n", rsdp_mod->Checksum);
if (version)
{
DBG("RSDP: Original extended checksum %d", rsdp_mod->ExtendedChecksum);
rsdp_mod->ExtendedChecksum=0;
rsdp_mod->ExtendedChecksum=256-checksum8(rsdp_mod,rsdp_mod->Length);
DBG("New extended checksum %d\n", rsdp_mod->ExtendedChecksum);
}
//verbose("Patched ACPI version %d DSDT\n", version+1);
if (version)
{
/* XXX aserebln why uint32 cast if pointer is uint64 ? */
acpi20_p = (uint32_t)rsdp_mod;
addConfigurationTable(&gEfiAcpi20TableGuid, &acpi20_p, "ACPI_20");
}
else
{
/* XXX aserebln why uint32 cast if pointer is uint64 ? */
acpi10_p = (uint32_t)rsdp_mod;
addConfigurationTable(&gEfiAcpiTableGuid, &acpi10_p, "ACPI");
}
}
#if DEBUG_ACPI
printf("Press a key to continue... (DEBUG_ACPI)\n");
getc();
#endif
return 1;
}
branches/blackosx/i386/libsaio/acpi_patcher.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
* Copyright 2008 mackerintel
*/
#ifndef __LIBSAIO_ACPI_PATCHER_H
#define __LIBSAIO_ACPI_PATCHER_H
#include "libsaio.h"
uint64_t acpi10_p;
uint64_t acpi20_p;
uint64_t smbios_p;
extern int setupAcpi();
extern EFI_STATUS addConfigurationTable();
extern EFI_GUID gEfiAcpiTableGuid;
extern EFI_GUID gEfiAcpi20TableGuid;
struct p_state
{
union
{
uint16_t Control;
struct
{
uint8_t VID;// Voltage ID
uint8_t FID;// Frequency ID
};
};
uint8_tCID;// Compare ID
uint32_tFrequency;
};
#endif /* !__LIBSAIO_ACPI_PATCHER_H */
branches/blackosx/i386/libsaio/aml_generator.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
* aml_generator.c
* Chameleon
*
* Created by Mozodojo on 20/07/10.
* Copyright 2010 mozo. All rights reserved.
*
*/
#include "aml_generator.h"
unsigned char aml_get_length_size(long length)
{
if (length > 0x3F)
return 2;
else if (length > 0x3FFF)
return 3;
return 1;
}
void aml_add_to_parent(struct aml_chunk* parent, struct aml_chunk* node)
{
if (parent && node)
{
if (!parent->First)
parent->First = node;
if (parent->Last)
parent->Last->Next = node;
parent->Last = node;
}
}
struct aml_chunk* aml_create_node(struct aml_chunk* parent)
{
struct aml_chunk* node = (void*)malloc(sizeof(struct aml_chunk));
aml_add_to_parent(parent, node);
return node;
}
int aml_add_buffer(struct aml_chunk* parent, const char* buffer, unsigned int size)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_NONE;
node->Length = size;
node->Buffer = malloc(node->Length);
memcpy(node->Buffer, buffer, size);
return node->Length;
}
return -1;
}
int aml_add_byte(struct aml_chunk* parent, unsigned char value)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_BYTE;
node->Length = 1;
node->Buffer = malloc(node->Length);
if (value == 0)
node->Buffer[0] = 0x00;
else if (value == 1)
node->Buffer[0] = 0x01;
else
node->Buffer[0] = value;
return node->Length;
}
return -1;
}
int aml_add_word(struct aml_chunk* parent, unsigned int value)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_WORD;
node->Length = 2;
node->Buffer = malloc(node->Length);
node->Buffer[0] = value & 0xff;
node->Buffer[1] = value >> 8;
return node->Length;
}
return -1;
}
int aml_add_dword(struct aml_chunk* parent, unsigned long value)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_DWORD;
node->Length = 4;
node->Buffer = malloc(node->Length);
node->Buffer[0] = value & 0xff;
node->Buffer[1] = (value >> 8) & 0xff;
node->Buffer[2] = (value >> 16) & 0xff;
node->Buffer[3] = (value >> 24) & 0xff;
return node->Length;
}
return -1;
}
int aml_add_qword(struct aml_chunk* parent, unsigned long long value)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_QWORD;
node->Length = 8;
node->Buffer = malloc(node->Length);
node->Buffer[0] = value & 0xff;
node->Buffer[1] = (value >> 8) & 0xff;
node->Buffer[2] = (value >> 16) & 0xff;
node->Buffer[3] = (value >> 24) & 0xff;
node->Buffer[4] = (value >> 32) & 0xff;
node->Buffer[5] = (value >> 40) & 0xff;
node->Buffer[6] = (value >> 48) & 0xff;
node->Buffer[7] = (value >> 56) & 0xff;
return node->Length;
}
return -1;
}
int aml_fill_simple_name(char* buffer, const char* name)
{
int i, len = strlen(name), count = 0;
for (i = 0; i < 4; i++)
{
if (i < len && aml_isvalidchar(name[i]))
{
buffer[count++] = name[i];
}
else
{
buffer[3-i] = '_';
}
}
return 4;
}
int aml_fill_name(struct aml_chunk* node, const char* name)
{
if (!node)
return -1;
int i, len = strlen(name), count = 0;
for (i = 0; i < len; i++)
{
if (name[i] == '.')
{
count++;
}
else if (!aml_isvalidchar(name[i]))
{
len = i;
break;
}
}
if (count == 0 && len > 0)
count++;
int offset = 0;
if (count == 1)
{
node->Length = 4;
node->Buffer = malloc(node->Length);
aml_fill_simple_name(node->Buffer, name);
return node->Length;
}
if (count == 2)
{
node->Length = 2 + 8;
node->Buffer = malloc(node->Length);
node->Buffer[offset++] = '\\'; // Root
node->Buffer[offset++] = 0x2e; // Double name
}
else
{
node->Length = 3 + count*4;
node->Buffer[offset++] = '\\'; // Root
node->Buffer[offset++] = 0x2f; // Multi name
node->Buffer[offset++] = count; // Names count
}
int j = 0;
for (i = 0; i < count; i++)
{
offset += aml_fill_simple_name(node->Buffer + offset, name + j);
while (name[j] != '.')
{
if (j < len)
{
j++;
}
else
{
verbose("aml_fill_name: unexpected end of names path!");
return -1;
}
}
}
return offset;
}
int aml_add_name(struct aml_chunk* parent, const char* name, int count, ...)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_NAME;
aml_fill_name(node, name);
return node->Length;
}
return -1;
}
int aml_add_scope(struct aml_chunk* parent, const char* name)
{
struct aml_chunk* node = aml_create_node(parent);
if (node)
{
node->Type = AML_CHUNK_SCOPE;
aml_fill_name(node, name);
return node->Length;
}
return -1;
}
branches/blackosx/i386/libsaio/aml_generator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
* aml_generator.h
* Chameleon
*
* Created by Mozodojo on 20/07/10.
* Copyright 2010 mozo. All rights reserved.
*
*/
#ifndef __LIBSAIO_AML_GENERATOR_H
#define __LIBSAIO_AML_GENERATOR_H
#include "libsaio.h"
enum aml_chunk_type
{
AML_CHUNK_NONE= -1,
AML_CHUNK_ZERO= 0x00,
AML_CHUNK_ONE= 0x01,
AML_CHUNK_ALIAS= 0x06,
AML_CHUNK_NAME= 0x08,
AML_CHUNK_BYTE= 0x0A,
AML_CHUNK_WORD= 0x0B,
AML_CHUNK_DWORD= 0x0C,
AML_CHUNK_STRING= 0x0D,
AML_CHUNK_QWORD= 0x0E,
AML_CHUNK_SCOPE= 0x10,
AML_CHUNK_PACKAGE= 0x12,
};
struct aml_chunk
{
enum aml_chunk_typeType;
unsigned longLength;
char*Buffer;
struct aml_chunk*Next;
struct aml_chunk*First;
struct aml_chunk*Last;
};
static inline bool aml_isvalidchar(char c)
{
return isupper(c) || isdigit(c) || c == '_';
};
#endif /* !__LIBSAIO_AML_GENERATOR_H */

Archive Download the corresponding diff file

Revision: 223