Chameleon

Chameleon Commit Details

Date:2010-01-31 03:54:57 (14 years 2 months ago)
Author:Pradeesh
Commit:51
Parents: 50
Message:Fixed makefile , now we should able to compile it. How silly , I did not include / Importing netkas 10.2 PC_EFI's ata driver and going to start to tweak it a bit Imported few other Intel related stuff including merkelots EDID related stuff. Should at least able to get monitors native res and stuff
Changes:
A/branches/prasys/i386/libsaio/mindrvr.c
A/branches/prasys/i386/libsaio/915resolution.c
A/branches/prasys/i386/libsaio/cddrvr.c
A/branches/prasys/i386/libsaio/edid.c
A/branches/prasys/i386/libsaio/mindrvr.h
A/branches/prasys/i386/libsaio/915resolution.h
A/branches/prasys/i386/libsaio/edid.h
M/branches/prasys/i386/libsaio/Makefile

File differences

branches/prasys/i386/libsaio/Makefile
4141
4242
4343
44
44
4545
4646
4747
smbios_patcher.o fake_efi.o ext2fs.o \
hpet.o spd.o usb.o pci_setup.o \
device_inject.o nvidia.o ati.o gma.o 915resolution.o edid.o \
mindrvr.o cddrvr.o \
mindrvr.o cddrvr.o \
SAIO_EXTERN_OBJS = console.o
branches/prasys/i386/libsaio/cddrvr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
* Copyright (c) 2009 netkas. All rights reserved.
* Redistribution and use in binary form for direct or indirect commercial purposes, with or without
* modification, is stricktly forbidden.
* Redistributions in binary form for non-commercial purposes must reproduce the above license notice,
* this list of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* Neither the names of EFI V1-V10 copyright owner nor the names of its contributors may be used
* to endorse or promote products derived direct or indirect from this software.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "libsaio.h"
#include "mindrvr.h"
#define CDB_SIZE_T 12
uint8_t cdb[CDB_SIZE_T];
uint32_t cd_drives[32][4];
uint32_t cd_count = 0;
uint8_t cd_bad[10] = {0,0,0,0,0,0,0,0,0,0};
uint32_t pci_count = 0;
uint32_t pci_devs[ 768 ];
uint32_t curdrive = 0;
#define CACHE_BLKN 4
unsigned char * cache_2k;
unsigned int cache_blk;
static void DriveReset(uint32_t dev)
{
if (dev > cd_count)
{
printf("device %d doesnt exist, max is %d\n", dev, cd_count);
return;
}
reg_reset(cd_drives[dev][2]);
}
static int SelectDrive(uint32_t dev)
{
if(cd_bad[dev] == 1) return 1;
if(curdrive == dev) return 0;
if (dev > cd_count)
{
printf("device %d doesnt exist, max is %d\n", dev, cd_count);
return 1;
}
pio_set_iobase_addr(cd_drives[dev][0], cd_drives[dev][1], cd_drives[dev][3]);
//reg_config();
reg_config_info[0]=0;
reg_config_info[1]=0;
reg_config_info[cd_drives[dev][2]]=REG_CONFIG_TYPE_ATAPI;
curdrive = dev;
//DriveReset(dev);
return 0;
}
static int cdcheck (int dev, char * buffer)
{
uint32_t result, try, wait_time;
if(SelectDrive(dev))
{
printf("Select drive returned 1, thats bad\n");
return -1;
};
for (try=0; try<10; ++try)
{
memset( cdb, 0, sizeof( cdb ) );
cdb[0] = 0xa8;
cdb[1] = 0x00;
cdb[2] = 0x00;
cdb[3] = 0x00;
cdb[4] = 0x00;
cdb[5] = 0x00;
cdb[6] = 0x00;
cdb[7] = 0x00;
cdb[8] = 0x00;
cdb[9] = 0x01;
cdb[10] = 0x00;
cdb[11] = 0x00;
result = reg_packet(cd_drives[dev][2], sizeof(cdb), (unsigned char*) cdb, 0, 2048, cache_2k);
if(!result)
{
return 0;
}
wait_time = time18() + 20;
while(time18() < wait_time);
}
return -1;
}
static void AddDrive(uint32_t base1, uint32_t base2, uint32_t bmbase)
{
uint32_t res,i;
pio_set_iobase_addr(base1, base2, bmbase);
res=reg_config();
if(res>0)
{
printf( "AddDrive: Found %d devices, base1 is %x, base2 is %x, dev 0 is %d, dev 1 is %d.\n",
res, base1, base2,
reg_config_info[0] ,
reg_config_info[1] );
if(reg_config_info[0] == REG_CONFIG_TYPE_ATAPI)
{
i=++cd_count;
cd_drives[i][0] = base1;
cd_drives[i][1] = base2;
cd_drives[i][2] = 0; //master
cd_drives[i][3] = bmbase;
printf("added master device %d\n", i);
reg_reset(0);
}
if(reg_config_info[1] == REG_CONFIG_TYPE_ATAPI)
{
i=++cd_count;
cd_drives[i][0] = base1;
cd_drives[i][1] = base2;
cd_drives[i][2] = 1; //slave
cd_drives[i][3] = bmbase;
printf("added slave device %d\n", i);
reg_reset(1);
}
}
}
int setup_cdread(void)
{
int res;
int trylegacy = 0;
uint16_t i;
unsigned int pcidev=0;
unsigned int index=0;
unsigned int vendid=0;
unsigned int devid=0;
unsigned int cmdBase=0;
unsigned int ctrlBase=0;
unsigned int classid=0;
unsigned int bmideBase=0;
if(cd_count>0) return cd_count;
for(i=0; i<0x05ff;i++)
{
vendid = GetPciDword( i, 0x00) & 0xffff;
devid = (GetPciDword( i, 0x00) >>16) & 0xffff;
if((vendid != 0xffff) && (vendid != 0x0000) && (devid != 0x2825) && (devid != 0x2921) && (devid != 0x2926) && (devid != 0x3a06) && (devid != 0x3a26))// && (vendid != 0x1283) && (vendid != 0x197b)) // dont need jmicron and ite
{
//devid = (GetPciDword( i, 0x00) >>16) & 0xffff;
classid = (GetPciDword( i, 0x08) >>16) & 0xffff;
if(classid == 0x0101)
{
printf("device %x, vendid %x, devid %x, classid %x\n", i, vendid, devid, classid);
cmdBase = GetPciDword(i, 0x10) & 0xfffe;
ctrlBase = GetPciDword(i, 0x14) & 0xfffe;
bmideBase = GetPciDword(i, 0x20) & 0xffff;
if(cmdBase && ctrlBase)AddDrive(cmdBase, ctrlBase, bmideBase); //no need in bmidebase?
if(cmdBase == 0 && ctrlBase == 0) trylegacy=1;
printf("pri port cmdbase - %x, ctrlbase - %x, bmideBase - %x\n", cmdBase, ctrlBase, bmideBase);
cmdBase = GetPciDword(i, 0x10+8) & 0xfffe;
ctrlBase = GetPciDword(i, 0x14+8) & 0xfffe;
if(cmdBase && ctrlBase)AddDrive(cmdBase, ctrlBase, bmideBase);
printf("sec port cmdbase - %x, ctrlbase - %x, bmideBase - %x\n", cmdBase, ctrlBase, bmideBase);
}
}
}
if(trylegacy)
{
AddDrive(0x1f0, 0x3f4, 0x00);
AddDrive(0x170, 0x374, 0x00);
}
if(cd_count == 0) return 0;
//AddDrive(0xa000, 0x9c00, 0x00); //ich9r pri
//AddDrive(0x9880, 0x9800, 0x00); //ich9r sec
//AddDrive(0xd600, 0xd700, 0x00);
//AddDrive(0xd800, 0xd900, 0x00);
cache_2k = malloc(2048*CACHE_BLKN);
cache_blk = 0xFFFF0000;
for(i=1; i<=cd_count;i++)
if(cdcheck(i, cache_2k))
{
printf("no inserted cd found in drive %d\n",i);
cd_bad[i]=1;
}
printf("cd setup done\n");
return cd_count;
}
int cdread (int dev, unsigned int secno, char * buffer)
{
uint32_t result, try, wait_time, olddrive;
olddrive=curdrive; //saving curdrive until its overwrited in SelectDrive
if(SelectDrive(dev))
{
printf("Select drive returned 1, thats bad\n");
return -1;
};
if(secno >= cache_blk && secno < (cache_blk + CACHE_BLKN) && olddrive == dev)
{
bcopy(cache_2k + (secno - cache_blk) * 2048, buffer, 2048);
return 0;
}
for (try=0; try<10; ++try)
{
memset( cdb, 0, sizeof( cdb ) );
cdb[0] = 0xa8;
cdb[1] = 0x00;
cdb[2] = (OSSwapBigToHostInt32(secno) & 0xFF); //4
cdb[3] = (OSSwapBigToHostInt32(secno) & 0xFF00) >> 8; //3
cdb[4] = (OSSwapBigToHostInt32(secno) & 0xFF0000) >> 16; //2
cdb[5] = (OSSwapBigToHostInt32(secno) & 0xFF000000) >> 24; //1
cdb[6] = 0x00;
cdb[7] = 0x00;
cdb[8] = 0x00;
cdb[9] = CACHE_BLKN;
cdb[10] = 0x00;
cdb[11] = 0x00;
result = reg_packet(cd_drives[dev][2], sizeof(cdb), (unsigned char*) cdb, 0, 2048*CACHE_BLKN, cache_2k);
if(!result)
{
bcopy(cache_2k, buffer, 2048);
cache_blk=secno;
return 0;
}
//DriveReset(dev);
wait_time = time18() + 50;
while(time18() < wait_time);
}
return -1;
}
void ejectcd(uint32_t dev, uint32_t dir)
{
SelectDrive(dev);
memset( cdb, 0, sizeof( cdb ) );
cdb[0] = 0x1b;
cdb[1] = 0x00;
cdb[2] = 0x00;
cdb[3] = 0x00;
cdb[4] = dir ? 2 :3;
cdb[5] = 0x00;
cdb[6] = 0x00;
cdb[7] = 0x00;
cdb[8] = 0x00;
cdb[9] = 0x00;
cdb[10] = 0x00;
cdb[11] = 0x00;
reg_packet(cd_drives[dev][2], sizeof(cdb), (unsigned char*) cdb, 0, 2048,kLoadAddr);
//DriveReset(dev);
}
branches/prasys/i386/libsaio/915resolution.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/* Copied from 915 resolution created by steve tomljenovic
*
* This code is based on the techniques used in :
*
* - 855patch. Many thanks to Christian Zietz (czietz gmx net)
* for demonstrating how to shadow the VBIOS into system RAM
* and then modify it.
*
* - 1280patch by Andrew Tipton (andrewtipton null li).
*
* - 855resolution by Alain Poirier
*
* This source code is into the public domain.
*/
#include "libsaio.h"
#include "915resolution.h"
char * chipset_type_names[] = {
"UNKNOWN", "830", "845G", "855GM", "865G", "915G", "915GM", "945G", "945GM", "945GME",
"946GZ", "G965", "Q965", "965GM", "500"
};
char * bios_type_names[] = {"UNKNOWN", "TYPE 1", "TYPE 2", "TYPE 3"};
int freqs[] = { 60, 75, 85 };
UInt32 get_chipset_id(void) {
outl(0xcf8, 0x80000000);
return inl(0xcfc);
}
chipset_type get_chipset(UInt32 id) {
chipset_type type;
switch (id) {
case 0x35758086:
type = CT_830;
break;
case 0x25608086:
type = CT_845G;
break;
case 0x35808086:
type = CT_855GM;
break;
case 0x25708086:
type = CT_865G;
break;
case 0x25808086:
type = CT_915G;
break;
case 0x25908086:
type = CT_915GM;
break;
case 0x27708086:
type = CT_945G;
break;
case 0x27a08086:
type = CT_945GM;
break;
case 0x27ac8086:
type = CT_945GME;
break;
case 0x29708086:
type = CT_946GZ;
break;
case 0x29a08086:
type = CT_G965;
break;
case 0x29908086:
type = CT_Q965;
break;
case 0x81008086:
type = CT_500;
break;
case 0x2a008086:
type = CT_965GM;
break;
default:
type = CT_UNKWN;
break;
}
return type;
}
vbios_resolution_type1 * map_type1_resolution(vbios_map * map, UInt16 res) {
vbios_resolution_type1 * ptr = ((vbios_resolution_type1*)(map->bios_ptr + res));
return ptr;
}
vbios_resolution_type2 * map_type2_resolution(vbios_map * map, UInt16 res) {
vbios_resolution_type2 * ptr = ((vbios_resolution_type2*)(map->bios_ptr + res));
return ptr;
}
vbios_resolution_type3 * map_type3_resolution(vbios_map * map, UInt16 res) {
vbios_resolution_type3 * ptr = ((vbios_resolution_type3*)(map->bios_ptr + res));
return ptr;
}
char detect_bios_type(vbios_map * map, char modeline, int entry_size) {
UInt32 i;
UInt16 r1, r2;
r1 = r2 = 32000;
for (i=0; i < map->mode_table_size; i++) {
if (map->mode_table[i].resolution <= r1) {
r1 = map->mode_table[i].resolution;
}
else {
if (map->mode_table[i].resolution <= r2) {
r2 = map->mode_table[i].resolution;
}
}
/*printf("r1 = %d r2 = %d\n", r1, r2);*/
}
return (r2-r1-6) % entry_size == 0;
}
void close_vbios(vbios_map * map);
vbios_map * open_vbios(chipset_type forced_chipset) {
UInt32 z;
vbios_map * map = NEW(vbios_map);
for(z=0; z<sizeof(vbios_map); z++) ((char*)map)[z]=0;
/*
* Determine chipset
+ */
if (forced_chipset == CT_UNKWN) {
map->chipset_id = get_chipset_id();
map->chipset = get_chipset(map->chipset_id);
}
else if (forced_chipset != CT_UNKWN) {
map->chipset = forced_chipset;
}
else {
map->chipset = CT_915GM;
}
/*
* Map the video bios to memory
*/
map->bios_ptr=(char*)VBIOS_START;
/*
* check if we have ATI Radeon
*/
/*if (memmem(map->bios_ptr, VBIOS_SIZE, ATI_SIGNATURE1, strlen(ATI_SIGNATURE1)) ||
memmem(map->bios_ptr, VBIOS_SIZE, ATI_SIGNATURE2, strlen(ATI_SIGNATURE2)) ) {
printf(stderr, "ATI chipset detected. 915resolution only works with Intel 800/900 series graphic chipsets.\n");
return 0;
}*/
/*
* check if we have NVIDIA
*/
/*if (memmem(map->bios_ptr, VBIOS_SIZE, NVIDIA_SIGNATURE, strlen(NVIDIA_SIGNATURE))) {
printf("NVIDIA chipset detected. 915resolution only works with Intel 800/900 series graphic chipsets.\n");
return 0;
}*/
/*
* check if we have Intel
*/
/*if (map->chipset == CT_UNKWN && memmem(map->bios_ptr, VBIOS_SIZE, INTEL_SIGNATURE, strlen(INTEL_SIGNATURE))) {
printf( "Intel chipset detected. However, 915resolution was unable to determine the chipset type.\n");
printf("Chipset Id: %x\n", map->chipset_id);
printf("Please report this problem to stomljen@yahoo.com\n");
close_vbios(map);
return 0;
}*/
/*
* check for others
*/
if (map->chipset == CT_UNKWN) {
printf("Unknown chipset type and unrecognized bios.\n");
printf("915resolution only works with Intel 800/900 series graphic chipsets.\n");
printf("Chipset Id: %x\n", map->chipset_id);
close_vbios(map);
return 0;
}
/*
* Figure out where the mode table is
*/
{
char* p = map->bios_ptr + 16;
char* limit = map->bios_ptr + VBIOS_SIZE - (3 * sizeof(vbios_mode));
while (p < limit && map->mode_table == 0) {
vbios_mode * mode_ptr = (vbios_mode *) p;
if (((mode_ptr[0].mode & 0xf0) == 0x30) && ((mode_ptr[1].mode & 0xf0) == 0x30) &&
((mode_ptr[2].mode & 0xf0) == 0x30) && ((mode_ptr[3].mode & 0xf0) == 0x30)) {
map->mode_table = mode_ptr;
}
p++;
}
if (map->mode_table == 0) {
printf("Unable to locate the mode table.\n");
printf("Please run the program 'dump_bios' as root and\n");
printf("email the file 'vbios.dmp' to stomljen@yahoo.com.\n");
printf("Chipset: %s\n", chipset_type_names[map->chipset]);
close_vbios(map);
return 0;
}
}
/*
* Determine size of mode table
*/
{
vbios_mode * mode_ptr = map->mode_table;
while (mode_ptr->mode != 0xff) {
map->mode_table_size++;
mode_ptr++;
}
}
/*
* Figure out what type of bios we have
* order of detection is important
*/
if (detect_bios_type(map, TRUE, sizeof(vbios_modeline_type3))) {
map->bios = BT_3;
}
else if (detect_bios_type(map, TRUE, sizeof(vbios_modeline_type2))) {
map->bios = BT_2;
}
else if (detect_bios_type(map, FALSE, sizeof(vbios_resolution_type1))) {
map->bios = BT_1;
}
else {
printf("Unable to determine bios type.\n");
printf("Please run the program 'dump_bios' as root and\n");
printf("email the file 'vbios.dmp' to stomljen@yahoo.com.\n");
printf("Chipset: %s\n", chipset_type_names[map->chipset]);
printf("Mode Table Offset: $C0000 + $%x\n", ((UInt32)map->mode_table) - ((UInt32)map->bios_ptr));
printf("Mode Table Entries: %u\n", map->mode_table_size);
return 0;
}
return map;
}
void close_vbios(vbios_map * map) {
FREE(map);
}
void unlock_vbios(vbios_map * map) {
map->unlocked = TRUE;
switch (map->chipset) {
case CT_UNKWN:
break;
case CT_830:
case CT_855GM:
outl(0xcf8, 0x8000005a);
map->b1 = inb(0xcfe);
outl(0xcf8, 0x8000005a);
outb(0xcfe, 0x33);
break;
case CT_845G:
case CT_865G:
case CT_915G:
case CT_915GM:
case CT_945G:
case CT_945GM:
case CT_945GME:
case CT_946GZ:
case CT_G965:
case CT_Q965:
case CT_965GM:
case CT_500:
outl(0xcf8, 0x80000090);
map->b1 = inb(0xcfd);
map->b2 = inb(0xcfe);
outl(0xcf8, 0x80000090);
outb(0xcfd, 0x33);
outb(0xcfe, 0x33);
break;
}
#if DEBUG
{
UInt32 t = inl(0xcfc);
printf("unlock PAM: (0x%08x)\n", t);
}
#endif
}
void relock_vbios(vbios_map * map) {
map->unlocked = FALSE;
switch (map->chipset) {
case CT_UNKWN:
break;
case CT_830:
case CT_855GM:
outl(0xcf8, 0x8000005a);
outb(0xcfe, map->b1);
break;
case CT_845G:
case CT_865G:
case CT_915G:
case CT_915GM:
case CT_945G:
case CT_945GM:
case CT_945GME:
case CT_946GZ:
case CT_G965:
case CT_Q965:
case CT_965GM:
case CT_500:
outl(0xcf8, 0x80000090);
outb(0xcfd, map->b1);
outb(0xcfe, map->b2);
break;
}
#if DEBUG
{
UInt32 t = inl(0xcfc);
printf("relock PAM: (0x%08x)\n", t);
}
#endif
}
static void gtf_timings(UInt32 x, UInt32 y, UInt32 freq,
unsigned long *clock,
UInt16 *hsyncstart, UInt16 *hsyncend, UInt16 *hblank,
UInt16 *vsyncstart, UInt16 *vsyncend, UInt16 *vblank)
{
UInt32 hbl, vbl, vfreq;
vbl = y + (y+1)/(20000.0/(11*freq) - 1) + 1.5;
vfreq = vbl * freq;
hbl = 16 * (int)(x * (30.0 - 300000.0 / vfreq) /
+ (70.0 + 300000.0 / vfreq) / 16.0 + 0.5);
*vsyncstart = y;
*vsyncend = y + 3;
*vblank = vbl - 1;
*hsyncstart = x + hbl / 2 - (x + hbl + 50) / 100 * 8 - 1;
*hsyncend = x + hbl / 2 - 1;
*hblank = x + hbl - 1;
*clock = (x + hbl) * vfreq / 1000;
}
void set_mode(vbios_map * map, /*UInt32 mode,*/ UInt32 x, UInt32 y, UInt32 bp, UInt32 htotal, UInt32 vtotal) {
UInt32 xprev, yprev;
UInt32 i = 0, j;// patch first available mode
//for (i=0; i < map->mode_table_size; i++) {
//if (map->mode_table[0].mode == mode) {
switch(map->bios) {
case BT_1:
{
vbios_resolution_type1 * res = map_type1_resolution(map, map->mode_table[i].resolution);
if (bp) {
map->mode_table[i].bits_per_pixel = bp;
}
res->x2 = (htotal?(((htotal-x) >> 8) & 0x0f) : (res->x2 & 0x0f)) | ((x >> 4) & 0xf0);
res->x1 = (x & 0xff);
res->y2 = (vtotal?(((vtotal-y) >> 8) & 0x0f) : (res->y2 & 0x0f)) | ((y >> 4) & 0xf0);
res->y1 = (y & 0xff);
if (htotal)
res->x_total = ((htotal-x) & 0xff);
if (vtotal)
res->y_total = ((vtotal-y) & 0xff);
}
break;
case BT_2:
{
vbios_resolution_type2 * res = map_type2_resolution(map, map->mode_table[i].resolution);
res->xchars = x / 8;
res->ychars = y / 16 - 1;
xprev = res->modelines[0].x1;
yprev = res->modelines[0].y1;
for(j=0; j < 3; j++) {
vbios_modeline_type2 * modeline = &res->modelines[j];
if (modeline->x1 == xprev && modeline->y1 == yprev) {
modeline->x1 = modeline->x2 = x-1;
modeline->y1 = modeline->y2 = y-1;
gtf_timings(x, y, freqs[j], &modeline->clock,
&modeline->hsyncstart, &modeline->hsyncend,
&modeline->hblank, &modeline->vsyncstart,
&modeline->vsyncend, &modeline->vblank);
if (htotal)
modeline->htotal = htotal;
else
modeline->htotal = modeline->hblank;
if (vtotal)
modeline->vtotal = vtotal;
else
modeline->vtotal = modeline->vblank;
}
}
}
break;
case BT_3:
{
vbios_resolution_type3 * res = map_type3_resolution(map, map->mode_table[i].resolution);
xprev = res->modelines[0].x1;
yprev = res->modelines[0].y1;
for (j=0; j < 3; j++) {
vbios_modeline_type3 * modeline = &res->modelines[j];
if (modeline->x1 == xprev && modeline->y1 == yprev) {
modeline->x1 = modeline->x2 = x-1;
modeline->y1 = modeline->y2 = y-1;
gtf_timings(x, y, freqs[j], &modeline->clock,
&modeline->hsyncstart, &modeline->hsyncend,
&modeline->hblank, &modeline->vsyncstart,
&modeline->vsyncend, &modeline->vblank);
if (htotal)
modeline->htotal = htotal;
else
modeline->htotal = modeline->hblank;
if (vtotal)
modeline->vtotal = vtotal;
else
modeline->vtotal = modeline->vblank;
modeline->timing_h = y-1;
modeline->timing_v = x-1;
}
}
}
break;
case BT_UNKWN:
break;
}
//}
//}
}
void display_map_info(vbios_map * map) {
printf("Chipset: %s\n", chipset_type_names[map->chipset]);
printf("BIOS: %s\n", bios_type_names[map->bios]);
printf("Mode Table Offset: $C0000 + $%x\n", ((UInt32)map->mode_table) - ((UInt32)map->bios_ptr));
printf("Mode Table Entries: %u\n", map->mode_table_size);
}
/*
int parse_args(int argc, char *argv[], chipset_type *forced_chipset, UInt32 *list, UInt32 *mode, UInt32 *x, UInt32 *y, UInt32 *bp, UInt32 *raw, UInt32 *htotal, UInt32 *vtotal) {
UInt32 index = 0;
*list = *mode = *x = *y = *raw = *htotal = *vtotal = 0;
*forced_chipset = CT_UNKWN;
if ((argc > index) && !strcmp(argv[index], "-c")) {
index++;
+
+ if(argc<=index) {
+ return 0;
+ }
+
+ if (!strcmp(argv[index], "845")) {
+ *forced_chipset = CT_845G;
+ }
+ else if (!strcmp(argv[index], "855")) {
+ *forced_chipset = CT_855GM;
+ }
+ else if (!strcmp(argv[index], "865")) {
+ *forced_chipset = CT_865G;
+ }
+ else if (!strcmp(argv[index], "915G")) {
+ *forced_chipset = CT_915G;
+ }
+ else if (!strcmp(argv[index], "915GM")) {
+ *forced_chipset = CT_915GM;
+ }
+ else if (!strcmp(argv[index], "945G")) {
+ *forced_chipset = CT_945G;
+ }
+ else if (!strcmp(argv[index], "945GM")) {
+ *forced_chipset = CT_945GM;
+ }
+ else if (!strcmp(argv[index], "945GME")) {
+ *forced_chipset = CT_945GME;
+ }
+ else if (!strcmp(argv[index], "946GZ")) {
+ *forced_chipset = CT_946GZ;
+ }
+ else if (!strcmp(argv[index], "G965")) {
+ *forced_chipset = CT_G965;
+ }
+ else if (!strcmp(argv[index], "Q965")) {
+ *forced_chipset = CT_Q965;
+ }
+ else if (!strcmp(argv[index], "500")) {
+ *forced_chipset = CT_500;
+ }
+ else {
+ printf("No match for forced chipset: %s\n", argv[index]);
+ *forced_chipset = CT_UNKWN;
+ }
+
+ index++;
+
+ if (argc<=index) {
+ return 0;
+ }
+ }
+
+ if ((argc > index) && !strcmp(argv[index], "-l")) {
+ *list = 1;
+ index++;
+
+ if(argc<=index) {
+ return 0;
+ }
+ }
+
+ if ((argc > index) && !strcmp(argv[index], "-r")) {
+ *raw = 1;
+ index++;
+
+ if(argc<=index) {
+ return 0;
+ }
+ }
+
+ if (argc-index < 3 || argc-index > 6) {
+ return -1;
+ }
+
+ *mode = (UInt32) strtoul(argv[index], NULL, 16);
+ *x = (UInt32)strtoul(argv[index+1], NULL, 10);
+ *y = (UInt32)strtoul(argv[index+2], NULL, 10);
+
+
+ if (argc-index > 3) {
+ *bp = (UInt32)strtoul(argv[index+3], NULL, 10);
+ }
+ else {
+ *bp = 0;
+ }
+
+ if (argc-index > 4) {
+ *htotal = (UInt32)strtoul(argv[index+4], NULL, 10);
+ }
+ else {
+ *htotal = 0;
+ }
+
+ if (argc-index > 5) {
+ *vtotal = (UInt32)strtoul(argv[index+5], NULL, 10);
+ }
+ else {
+ *vtotal = 0;
+ }
+
+ return 0;
+}
+
*/
void list_modes(vbios_map *map, UInt32 raw) {
UInt32 i, x, y;
for (i=0; i < map->mode_table_size; i++) {
switch(map->bios) {
case BT_1:
{
vbios_resolution_type1 * res = map_type1_resolution(map, map->mode_table[i].resolution);
x = ((((UInt32) res->x2) & 0xf0) << 4) | res->x1;
y = ((((UInt32) res->y2) & 0xf0) << 4) | res->y1;
if (x != 0 && y != 0) {
printf("Mode %02x : %dx%d, %d bits/pixel\n", map->mode_table[i].mode, x, y, map->mode_table[i].bits_per_pixel);
}
if (raw)
{
printf("Mode %02x (raw) :\n\t%02x %02x\n\t%02x\n\t%02x\n\t%02x\n\t%02x\n\t%02x\n\t%02x\n", map->mode_table[i].mode, res->unknow1[0],res->unknow1[1], res->x1,res->x_total,res->x2,res->y1,res->y_total,res->y2);
}
}
break;
case BT_2:
{
vbios_resolution_type2 * res = map_type2_resolution(map, map->mode_table[i].resolution);
x = res->modelines[0].x1+1;
y = res->modelines[0].y1+1;
if (x != 0 && y != 0) {
printf("Mode %02x : %dx%d, %d bits/pixel\n", map->mode_table[i].mode, x, y, map->mode_table[i].bits_per_pixel);
}
}
break;
case BT_3:
{
vbios_resolution_type3 * res = map_type3_resolution(map, map->mode_table[i].resolution);
x = res->modelines[0].x1+1;
y = res->modelines[0].y1+1;
if (x != 0 && y != 0) {
printf("Mode %02x : %dx%d, %d bits/pixel\n", map->mode_table[i].mode, x, y, map->mode_table[i].bits_per_pixel);
}
}
break;
case BT_UNKWN:
break;
}
}
}
void usage() {
printf("Usage: 915resolution [-c chipset] [-l] [mode X Y] [bits/pixel] [htotal] [vtotal]\n");
printf(" Set the resolution to XxY for a video mode\n");
printf(" Bits per pixel are optional. htotal/vtotal settings are additionally optional.\n");
printf(" Options:\n");
printf(" -c force chipset type (THIS IS USED FOR DEBUG PURPOSES)\n");
printf(" -l display the modes found in the video BIOS\n");
printf(" -r display the modes found in the video BIOS in raw mode (THIS IS USED FOR DEBUG PURPOSES)\n");
}
/*
static err_t
cmd_915resolution (struct arg_list *state ,
int argc ,
char **argv )
{
vbios_map * map;
UInt32 list, mode, x, y, bp, raw, htotal, vtotal;
chipset_type forced_chipset;
printf("Intel 500/800/900 Series VBIOS Hack : version %s\n\n", VERSION);
if (parse_args(argc, argv, &forced_chipset, &list, &mode, &x, &y, &bp, &raw, &htotal, &vtotal) == -1) {
usage();
return 2;
}
map = open_vbios(forced_chipset);
display_map_info(map);
printf("\n");
if (list) {
list_modes(map, raw);
}
if (mode!=0 && x!=0 && y!=0) {
unlock_vbios(map);
set_mode(map, mode, x, y, bp, htotal, vtotal);
relock_vbios(map);
printf("Patch mode %02x to resolution %dx%d complete\n", mode, x, y);
if (list) {
list_modes(map, raw);
}
}
close_vbios(map);
return 0;
}
*/
branches/prasys/i386/libsaio/edid.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
* edid.c
*
*
* Created by Evan Lojewski on 12/1/09.
* Copyright 2009. All rights reserved.
*
*/
#include "libsaio.h"
#include "edid.h"
#include "vbe.h"
//#include "graphics.h"
static biosBuf_t bb;
UInt32 xResolution = 0;
UInt32 yResolution = 0;
UInt32 bpResolution = 0;
void getResolution(UInt32* x, UInt32* y, UInt32* bp)
{
if(!xResolution && !yResolution && !bpResolution)
{
char* edidInfo = readEDID();
if(!edidInfo) return;
// TODO: check *all* resolutions reported and eithe ruse the highest, or the native resolution (if there is a flag for that)
xResolution = edidInfo[56] | ((edidInfo[58] & 0xF0) << 4);
yResolution = edidInfo[59] | ((edidInfo[61] & 0xF0) << 4);
//printf("H Active = %d", edidInfo[56] | ((edidInfo[58] & 0xF0) << 4) );
//printf("V Active = %d", edidInfo[59] | ((edidInfo[61] & 0xF0) << 4) );
bpResolution = 32;// assume 32bits
free( edidInfo );
if(!xResolution) xResolution = 1024; //DEFAULT_SCREEN_WIDTH;
if(!yResolution) yResolution = 768; //DEFAULT_SCREEN_HEIGTH;
}
*x = xResolution;
*y = yResolution;
*bp = bpResolution;
}
char* readEDID()
{
SInt16 last_reported = -1;
UInt8 edidInfo[EDID_BLOCK_SIZE];
UInt8 pointer;
UInt8 header1[] = {0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00};
UInt8 header2[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
int status;
unsigned int blocks_left = 1;
do
{
// TODO: This currently only retrieves the *last* block, make the block buffer expand as needed / calculated from the first block
bzero( edidInfo, EDID_BLOCK_SIZE);
status = getEDID(edidInfo, blocks_left);
//printf("Buffer location: 0x%X\n", SEG(buffer) << 16 | OFF(buffer));
/*
int j, i;
for (j = 0; j < 8; j++) {
for(i = 0; i < 16; i++) printf("0x%X ", ebiosInfo[((i+1) * (j + 1)) - 1]);
}
printf("\n");
*/
if(status == 0)
{
//if( edidInfo[0] == 0x00 || edidInfo[0] == 0xFF)
if((memcmp(edidInfo, header1, sizeof(header1)) != 0) ||
(memcmp(edidInfo, header2, sizeof(header2)) != 0) )
{
blocks_left--;
int reported = edidInfo[ EDID_V1_BLOCKS_TO_GO_OFFSET ];
if ( reported > blocks_left )
{
printf("EDID claims %d more blocks left\n", reported);
}
if ( (last_reported <= reported && last_reported != -1)
|| reported == 0xff
/* 0xff frequently comes up in corrupt edids */
//|| reported == MAGIC
)
{
printf("Last reported %d\n", last_reported);
printf( "EDID blocks left is wrong.\n"
"Your EDID is probably invalid.\n");
return 0;
}
else
{
//printf("Reading EDID block\n");
//printf("H Active = %d", ebiosInfo[56] | ((ebiosInfo[58] & 0xF0) << 4) );
//printf("V Active = %d", ebiosInfo[59] | ((ebiosInfo[61] & 0xF0) << 4) );
last_reported = reported;
blocks_left = reported;
}
}
else
{
printf("Invalid block %d\n", blocks_left);
printf("Header1 = %d", memcmp(edidInfo, header1, sizeof(header1)) );
printf("Header2 = %d", memcmp(edidInfo, header2, sizeof(header2)) );
return 0;
}
}
blocks_left = 0;
} while(blocks_left);
UInt8* ret = malloc(sizeof(edidInfo));
memcpy(ret, edidInfo, sizeof(edidInfo));
return ret;
}
branches/prasys/i386/libsaio/915resolution.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/* Copied from 915 resolution created by steve tomljenovic
*
* This code is based on the techniques used in :
*
* - 855patch. Many thanks to Christian Zietz (czietz gmx net)
* for demonstrating how to shadow the VBIOS into system RAM
* and then modify it.
*
* - 1280patch by Andrew Tipton (andrewtipton null li).
*
* - 855resolution by Alain Poirier
*
* This source code is into the public domain.
*/
#ifndef __915_RESOLUTION_H
#define __915_RESOLUTION_H
#define NEW(a) ((a *)(malloc(sizeof(a))))
#define FREE(a) (free(a))
#define VBIOS_START 0xc0000
#define VBIOS_SIZE 0x10000
#define FALSE 0
#define TRUE 1
#define MODE_TABLE_OFFSET_845G 617
#define ATI_SIGNATURE1 "ATI MOBILITY RADEON"
#define ATI_SIGNATURE2 "ATI Technologies Inc"
#define NVIDIA_SIGNATURE "NVIDIA Corp"
#define INTEL_SIGNATURE "Intel Corp"
typedef enum {
CT_UNKWN, CT_830, CT_845G, CT_855GM, CT_865G, CT_915G, CT_915GM, CT_945G, CT_945GM, CT_945GME,
CT_946GZ, CT_G965, CT_Q965, CT_965GM, CT_500
} chipset_type;
typedef enum {
BT_UNKWN, BT_1, BT_2, BT_3
} bios_type;
typedef struct {
UInt8 mode;
UInt8 bits_per_pixel;
UInt16 resolution;
UInt8 unknown;
} __attribute__((packed)) vbios_mode;
typedef struct {
UInt8 unknow1[2];
UInt8 x1;
UInt8 x_total;
UInt8 x2;
UInt8 y1;
UInt8 y_total;
UInt8 y2;
} __attribute__((packed)) vbios_resolution_type1;
typedef struct {
unsigned long clock;
UInt16 x1;
UInt16 htotal;
UInt16 x2;
UInt16 hblank;
UInt16 hsyncstart;
UInt16 hsyncend;
UInt16 y1;
UInt16 vtotal;
UInt16 y2;
UInt16 vblank;
UInt16 vsyncstart;
UInt16 vsyncend;
} __attribute__((packed)) vbios_modeline_type2;
typedef struct {
UInt8 xchars;
UInt8 ychars;
UInt8 unknown[4];
vbios_modeline_type2 modelines[];
} __attribute__((packed)) vbios_resolution_type2;
typedef struct {
unsigned long clock;
UInt16 x1;
UInt16 htotal;
UInt16 x2;
UInt16 hblank;
UInt16 hsyncstart;
UInt16 hsyncend;
UInt16 y1;
UInt16 vtotal;
UInt16 y2;
UInt16 vblank;
UInt16 vsyncstart;
UInt16 vsyncend;
UInt16 timing_h;
UInt16 timing_v;
UInt8 unknown[6];
} __attribute__((packed)) vbios_modeline_type3;
typedef struct {
unsigned char unknown[6];
vbios_modeline_type3 modelines[];
} __attribute__((packed)) vbios_resolution_type3;
typedef struct {
UInt32 chipset_id;
chipset_type chipset;
bios_type bios;
UInt32 bios_fd;
char* bios_ptr;
vbios_mode * mode_table;
UInt32 mode_table_size;
UInt8 b1, b2;
UInt8 unlocked;
} vbios_map;
void display_map_info(vbios_map*);
vbios_map * open_vbios(chipset_type);
void close_vbios (vbios_map*);
void unlock_vbios(vbios_map*);
void relock_vbios(vbios_map*);
void set_mode(vbios_map*, UInt32, UInt32, UInt32, UInt32, UInt32);
void list_modes(vbios_map *map, UInt32 raw);
#endif
branches/prasys/i386/libsaio/edid.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
* edid.h
*
*
* Created by Evan Lojewski on 12/1/09.
* Copyright 2009. All rights reserved.
*
*/
#define EDID_BLOCK_SIZE128
#define EDID_V1_BLOCKS_TO_GO_OFFSET 126
#define SERVICE_REPORT_DDC0
#define SERVICE_READ_EDID1
#define SERVICE_LAST1 // Read VDIF has been removed from the spec.
#define FUNC_GET_EDID0x4F15
char* readEDID();
void getResolution(UInt32* x, UInt32* y, UInt32* bp);
branches/prasys/i386/libsaio/mindrvr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
//********************************************************************
// MINIMUM ATA LOW LEVEL I/O DRIVER -- MINDRVR.C
//
// by Hale Landis (hlandis@ata-atapi.com)
//
// There is no copyright and there are no restrictions on the use
// of this ATA Low Level I/O Driver code. It is distributed to
// help other programmers understand how the ATA device interface
// works and it is distributed without any warranty. Use this
// code at your own risk.
//
// Minimum ATA Driver (MINDRVR) is a subset of ATADRVR. MINDRVR
// has a single header file and a single C file. MINDRVR can
// be used as the starting point for an ATADRVR for an embedded
// system. NOTE all the places in the MINDRVR.H and MINDRVR.C files
// where there is a comment containing the string "!!!".
//
// Use the header file mindrvr.h in any C files that call MINDRVR
// functions.
//
// This code is based on the ATA/ATAPI-4,-5 and -6 standards and
// on interviews with various ATA controller and drive designers.
//
// Note that MINDRVR does not support ATA CHS addressing.
//
// Most of the MINDRVR code is standard C code and should compile
// using any C compiler. It has been tested using Borland C/C++ 4.5.
//
// This C source file is the header file for the driver
// and is used in the MINDRVR.C files and must also be used
// by any program using the MINDRVR code/functions.
//********************************************************************
// Added boot-132 support by netkas, 2009
#include "mindrvr.h"
#include "io_inline.h"
//**************************************************************
//
// !!! data that functions outside of MINDRVR must use
//
// Note that there is no actual "interrupt handler" provide in
// MINDRVR. The interrupt handler is usually a small function that
// is very system specific. However, MINDRVR expects that interrupt
// handler function to provide some status data at the time the
// interrupt handler is executed.
//
// In many systems, including PCI bus based systems, when an
// interrupt is received from an ATA controller, the interrupt
// handler must acknowledge the interrupt by reading both the
// ATA/ATAPI device Status register and the controller status
// register. This status must be stored here so that MINDRVR
// can use it.
//
//**************************************************************
unsigned char int_ata_status; // ATA status read by interrupt handler
unsigned char int_bmide_status; // BMIDE status read by interrupt handler
unsigned char int_use_intr_flag = INT_DEFAULT_INTERRUPT_MODE;
struct REG_CMD_INFO reg_cmd_info;
int reg_config_info[2];
unsigned char * pio_bmide_base_addr;
unsigned char * pio_reg_addrs[9];
/* =
{
PIO_BASE_ADDR1 + 0, // [0] CB_DATA
PIO_BASE_ADDR1 + 1, // [1] CB_FR & CB_ER
PIO_BASE_ADDR1 + 2, // [2] CB_SC
PIO_BASE_ADDR1 + 3, // [3] CB_SN
PIO_BASE_ADDR1 + 4, // [4] CB_CL
PIO_BASE_ADDR1 + 5, // [5] CB_CH
PIO_BASE_ADDR1 + 6, // [6] CB_DH
PIO_BASE_ADDR1 + 7, // [7] CB_CMD & CB_STAT
PIO_BASE_ADDR2 + 0 // [8] CB_DC & CB_ASTAT
} ;
*/
unsigned char pio_xfer_width = PIO_DEFAULT_XFER_WIDTH;
//**************************************************************
//
// functions internal and private to MINDRVR
//
//**************************************************************
static void sub_setup_command( void );
static void sub_trace_command( void );
static int sub_select( unsigned char dev );
static void sub_wait_poll( unsigned char we, unsigned char pe );
unsigned char pio_inbyte( unsigned char addr );
void pio_outbyte( int addr, unsigned char data );
static unsigned int pio_inword( unsigned char addr );
static void pio_outword( int addr, unsigned int data );
static unsigned long pio_indword( unsigned char addr );
static void pio_outdword( int addr, unsigned long data );
static void pio_drq_block_in( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt );
static void pio_drq_block_out( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt );
static void pio_rep_inbyte( unsigned char addrDataReg,
unsigned char * bufAddr,
long byteCnt );
static void pio_rep_outbyte( unsigned char addrDataReg,
unsigned char * bufAddr,
long byteCnt );
static void pio_rep_inword( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt );
static void pio_rep_outword( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt );
static void pio_rep_indword( unsigned char addrDataReg,
unsigned char * bufAddr,
long dwordCnt );
static void pio_rep_outdword( unsigned char addrDataReg,
unsigned char * bufAddr,
long dwordCnt );
static unsigned char pio_readBusMstrCmd( void );
static unsigned char pio_readBusMstrStatus( void );
static void pio_writeBusMstrCmd( unsigned char x );
static void pio_writeBusMstrStatus( unsigned char x );
static long tmr_cmd_start_time; // command start time
static void tmr_set_timeout( void );
static int tmr_chk_timeout( void );
// This macro provides a small delay that is used in several
// places in the ATA command protocols:
#define DELAY400NS { pio_inbyte( CB_ASTAT ); pio_inbyte( CB_ASTAT ); \
pio_inbyte( CB_ASTAT ); pio_inbyte( CB_ASTAT ); }
void pio_set_iobase_addr( unsigned int base1,
unsigned int base2,
unsigned int base3 )
{
pio_bmide_base_addr = base3;
pio_reg_addrs[ CB_DATA ] = (unsigned char *)(base1 + 0); // 0
pio_reg_addrs[ CB_FR ] = (unsigned char *)(base1 + 1); // 1
pio_reg_addrs[ CB_SC ] = (unsigned char *)(base1 + 2); // 2
pio_reg_addrs[ CB_SN ] = (unsigned char *)(base1 + 3); // 3
pio_reg_addrs[ CB_CL ] = (unsigned char *)(base1 + 4); // 4
pio_reg_addrs[ CB_CH ] = (unsigned char *)(base1 + 5); // 5
pio_reg_addrs[ CB_DH ] = (unsigned char *)(base1 + 6); // 6
pio_reg_addrs[ CB_CMD ] = (unsigned char *)(base1 + 7); // 7
pio_reg_addrs[ CB_DC ] = (unsigned char *)(base2 + 2); // 8 //was + 6
}
//*************************************************************
//
// reg_config() - Check the host adapter and determine the
// number and type of drives attached.
//
// This process is not documented by any of the ATA standards.
//
// Infomation is returned by this function is in
// reg_config_info[] -- see MINDRVR.H.
//
//*************************************************************
int reg_config( void )
{
int numDev = 0;
unsigned char sc;
unsigned char sn;
unsigned char cl;
unsigned char ch;
unsigned char st;
unsigned char dc;
// setup register values
dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
// reset Bus Master Error bit
pio_writeBusMstrStatus( BM_SR_MASK_ERR );
// assume there are no devices
reg_config_info[0] = REG_CONFIG_TYPE_NONE;
reg_config_info[1] = REG_CONFIG_TYPE_NONE;
// set up Device Control register
pio_outbyte( CB_DC, dc );
// lets see if there is a device 0
pio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
pio_outbyte( CB_SC, 0x55 );
pio_outbyte( CB_SN, 0xaa );
pio_outbyte( CB_SC, 0xaa );
pio_outbyte( CB_SN, 0x55 );
pio_outbyte( CB_SC, 0x55 );
pio_outbyte( CB_SN, 0xaa );
sc = pio_inbyte( CB_SC );
sn = pio_inbyte( CB_SN );
if ( ( sc == 0x55 ) && ( sn == 0xaa ) )
reg_config_info[0] = REG_CONFIG_TYPE_UNKN;
// lets see if there is a device 1
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
pio_outbyte( CB_SC, 0x55 );
pio_outbyte( CB_SN, 0xaa );
pio_outbyte( CB_SC, 0xaa );
pio_outbyte( CB_SN, 0x55 );
pio_outbyte( CB_SC, 0x55 );
pio_outbyte( CB_SN, 0xaa );
sc = pio_inbyte( CB_SC );
sn = pio_inbyte( CB_SN );
if ( ( sc == 0x55 ) && ( sn == 0xaa ) )
reg_config_info[1] = REG_CONFIG_TYPE_UNKN;
// now we think we know which devices, if any are there,
// so lets try a soft reset (ignoring any errors).
pio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
reg_reset( 0 );
// lets check device 0 again, is device 0 really there?
// is it ATA or ATAPI?
pio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
sc = pio_inbyte( CB_SC );
sn = pio_inbyte( CB_SN );
if ( ( sc == 0x01 ) && ( sn == 0x01 ) )
{
reg_config_info[0] = REG_CONFIG_TYPE_UNKN;
st = pio_inbyte( CB_STAT );
cl = pio_inbyte( CB_CL );
ch = pio_inbyte( CB_CH );
if ( ( ( cl == 0x14 ) && ( ch == 0xeb ) ) // PATAPI
||
( ( cl == 0x69 ) && ( ch == 0x96 ) ) // SATAPI
)
{
reg_config_info[0] = REG_CONFIG_TYPE_ATAPI;
}
else
if ( ( st != 0 )
&&
( ( ( cl == 0x00 ) && ( ch == 0x00 ) ) // PATA
||
( ( cl == 0x3c ) && ( ch == 0xc3 ) ) ) // SATA
)
{
reg_config_info[0] = REG_CONFIG_TYPE_ATA;
}
}
// lets check device 1 again, is device 1 really there?
// is it ATA or ATAPI?
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
sc = pio_inbyte( CB_SC );
sn = pio_inbyte( CB_SN );
if ( ( sc == 0x01 ) && ( sn == 0x01 ) )
{
reg_config_info[1] = REG_CONFIG_TYPE_UNKN;
st = pio_inbyte( CB_STAT );
cl = pio_inbyte( CB_CL );
ch = pio_inbyte( CB_CH );
if ( ( ( cl == 0x14 ) && ( ch == 0xeb ) ) // PATAPI
||
( ( cl == 0x69 ) && ( ch == 0x96 ) ) // SATAPI
)
{
reg_config_info[1] = REG_CONFIG_TYPE_ATAPI;
}
else
if ( ( st != 0 )
&&
( ( ( cl == 0x00 ) && ( ch == 0x00 ) ) // PATA
||
( ( cl == 0x3c ) && ( ch == 0xc3 ) ) ) // SATA
)
{
reg_config_info[1] = REG_CONFIG_TYPE_ATA;
}
}
// If possible, select a device that exists, try device 0 first.
if ( reg_config_info[1] != REG_CONFIG_TYPE_NONE )
{
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
numDev ++ ;
}
if ( reg_config_info[0] != REG_CONFIG_TYPE_NONE )
{
pio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
numDev ++ ;
}
// BMIDE Error=1?
if ( pio_readBusMstrStatus() & BM_SR_MASK_ERR )
{
reg_cmd_info.ec = 78; // yes
}
// return the number of devices found
return numDev;
}
//*************************************************************
//
// reg_reset() - Execute a Software Reset.
//
// See ATA-2 Section 9.2, ATA-3 Section 9.2, ATA-4 Section 8.3.
//
//*************************************************************
int reg_reset( unsigned char devRtrn )
{
unsigned char sc;
unsigned char sn;
unsigned char status;
unsigned char dc;
// setup register values
dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
// reset Bus Master Error bit
pio_writeBusMstrStatus( BM_SR_MASK_ERR );
// initialize the command timeout counter
tmr_set_timeout();
// Set and then reset the soft reset bit in the Device Control
// register. This causes device 0 be selected.
pio_outbyte( CB_DC, (unsigned char) ( dc | CB_DC_SRST ) );
DELAY400NS;
pio_outbyte( CB_DC, dc );
DELAY400NS;
// If there is a device 0, wait for device 0 to set BSY=0.
if ( reg_config_info[0] != REG_CONFIG_TYPE_NONE )
{
while ( 1 )
{
status = pio_inbyte( CB_STAT );
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( tmr_chk_timeout() )
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 1;
break;
}
}
}
// If there is a device 1, wait until device 1 allows
// register access.
if ( reg_config_info[1] != REG_CONFIG_TYPE_NONE )
{
while ( 1 )
{
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
sc = pio_inbyte( CB_SC );
sn = pio_inbyte( CB_SN );
if ( ( sc == 0x01 ) && ( sn == 0x01 ) )
break;
if ( tmr_chk_timeout() )
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 2;
break;
}
}
// Now check if drive 1 set BSY=0.
if ( reg_cmd_info.ec == 0 )
{
if ( pio_inbyte( CB_STAT ) & CB_STAT_BSY )
{
reg_cmd_info.ec = 3;
}
}
}
// RESET_DONE:
// We are done but now we must select the device the caller
// requested. This will cause
// the correct data to be returned in reg_cmd_info.
pio_outbyte( CB_DH, (unsigned char) ( devRtrn ? CB_DH_DEV1 : CB_DH_DEV0 ) );
DELAY400NS;
// If possible, select a device that exists,
// try device 0 first.
if ( reg_config_info[1] != REG_CONFIG_TYPE_NONE )
{
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
}
if ( reg_config_info[0] != REG_CONFIG_TYPE_NONE )
{
pio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
}
// BMIDE Error=1?
if ( pio_readBusMstrStatus() & BM_SR_MASK_ERR )
{
reg_cmd_info.ec = 78; // yes
}
// All done. The return values of this function are described in
// MINDRVR.H.
sub_trace_command();
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//*************************************************************
//
// exec_non_data_cmd() - Execute a non-data command.
//
// This includes the strange ATAPI DEVICE RESET 'command'
// (command code 08H).
//
// Note special handling for Execute Device Diagnostics
// command when there is no device 0.
//
// See ATA-2 Section 9.5, ATA-3 Section 9.5,
// ATA-4 Section 8.8 Figure 12. Also see Section 8.5.
//
//*************************************************************
static int exec_non_data_cmd( unsigned char dev );
static int exec_non_data_cmd( unsigned char dev )
{
unsigned char secCnt;
unsigned char secNum;
unsigned char status;
int polled = 0;
// reset Bus Master Error bit
pio_writeBusMstrStatus( BM_SR_MASK_ERR );
// Set command time out.
tmr_set_timeout();
// PAY ATTENTION HERE
// If the caller is attempting a Device Reset command, then
// don't do most of the normal stuff. Device Reset has no
// parameters, should not generate an interrupt and it is the
// only command that can be written to the Command register
// when a device has BSY=1 (a very strange command!). Not
// all devices support this command (even some ATAPI devices
// don't support the command.
if ( reg_cmd_info.cmd != CMD_DEVICE_RESET )
{
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
return 1;
}
// Set up all the registers except the command register.
sub_setup_command();
}
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, reg_cmd_info.cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// IF
// This is an Exec Dev Diag command (cmd=0x90)
// and there is no device 0 then
// there will be no interrupt. So we must
// poll device 1 until it allows register
// access and then do normal polling of the Status
// register for BSY=0.
// ELSE
// IF
// This is a Dev Reset command (cmd=0x08) then
// there should be no interrupt. So we must
// poll for BSY=0.
// ELSE
// Do the normal wait for interrupt or polling for
// completion.
if ( ( reg_cmd_info.cmd == CMD_EXECUTE_DEVICE_DIAGNOSTIC )
&&
( reg_config_info[0] == REG_CONFIG_TYPE_NONE )
)
{
polled = 1;
while ( 1 )
{
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
secCnt = pio_inbyte( CB_SC );
secNum = pio_inbyte( CB_SN );
if ( ( secCnt == 0x01 ) && ( secNum == 0x01 ) )
break;
if ( tmr_chk_timeout() )
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 24;
break;
}
}
}
else
{
if ( reg_cmd_info.cmd == CMD_DEVICE_RESET )
{
// Wait for not BUSY -or- wait for time out.
polled = 1;
sub_wait_poll( 0, 23 );
}
else
{
// Wait for interrupt -or- wait for not BUSY -or- wait for time out.
if ( ! int_use_intr_flag )
polled = 1;
sub_wait_poll( 22, 23 );
}
}
// If status was polled or if any error read the status register,
// otherwise get the status that was read by the interrupt handler.
if ( ( polled ) || ( reg_cmd_info.ec ) )
status = pio_inbyte( CB_STAT );
else
status = int_ata_status;
// Error if BUSY, DEVICE FAULT, DRQ or ERROR status now.
if ( reg_cmd_info.ec == 0 )
{
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 21;
}
}
// BMIDE Error=1?
if ( pio_readBusMstrStatus() & BM_SR_MASK_ERR )
{
reg_cmd_info.ec = 78; // yes
}
// NON_DATA_DONE:
// All done. The return values of this function are described in
// MINDRVR.H.
sub_trace_command();
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//*************************************************************
//
// reg_non_data_lba28() - Easy way to execute a non-data command
// using an LBA sector address.
//
//*************************************************************
int reg_non_data_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba )
{
// Setup current command information.
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
reg_cmd_info.ns = sc;
reg_cmd_info.lbaSize = LBA28;
reg_cmd_info.lbaHigh = 0L;
reg_cmd_info.lbaLow = lba;
// Execute the command.
return exec_non_data_cmd( dev );
}
//*************************************************************
//
// reg_non_data_lba48() - Easy way to execute a non-data command
// using an LBA sector address.
//
//*************************************************************
int reg_non_data_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo )
{
// Setup current command infomation.
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
reg_cmd_info.ns = sc;
reg_cmd_info.lbaSize = LBA48;
reg_cmd_info.lbaHigh = lbahi;
reg_cmd_info.lbaLow = lbalo;
// Execute the command.
return exec_non_data_cmd( dev );
}
//*************************************************************
//
// exec_pio_data_in_cmd() - Execute a PIO Data In command.
//
// See ATA-2 Section 9.3, ATA-3 Section 9.3,
// ATA-4 Section 8.6 Figure 10.
//
//*************************************************************
static int exec_pio_data_in_cmd( unsigned char dev,
unsigned char * bufAddr,
long numSect, int multiCnt );
static int exec_pio_data_in_cmd( unsigned char dev,
unsigned char * bufAddr,
long numSect, int multiCnt )
{
unsigned char status;
long wordCnt;
// reset Bus Master Error bit
pio_writeBusMstrStatus( BM_SR_MASK_ERR );
// Set command time out.
tmr_set_timeout();
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
return 1;
}
// Set up all the registers except the command register.
sub_setup_command();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, reg_cmd_info.cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Loop to read each sector.
while ( 1 )
{
// READ_LOOP:
//
// NOTE NOTE NOTE ... The primary status register (1f7) MUST NOT be
// read more than ONCE for each sector transferred! When the
// primary status register is read, the drive resets IRQ. The
// alternate status register (3f6) can be read any number of times.
// After interrupt read the the primary status register ONCE
// and transfer the 256 words (REP INSW). AS SOON as BOTH the
// primary status register has been read AND the last of the 256
// words has been read, the drive is allowed to generate the next
// IRQ (newer and faster drives could generate the next IRQ in
// 50 microseconds or less). If the primary status register is read
// more than once, there is the possibility of a race between the
// drive and the software and the next IRQ could be reset before
// the system interrupt controller sees it.
// Wait for interrupt -or- wait for not BUSY -or- wait for time out.
sub_wait_poll( 34, 35 );
// If polling or error read the status, otherwise
// get the status that was read by the interrupt handler.
if ( ( ! int_use_intr_flag ) || ( reg_cmd_info.ec ) )
status = pio_inbyte( CB_STAT );
else
status = int_ata_status;
// If there was a time out error, go to READ_DONE.
if ( reg_cmd_info.ec )
break; // go to READ_DONE
// If BSY=0 and DRQ=1, transfer the data,
// even if we find out there is an error later.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == CB_STAT_DRQ )
{
// increment number of DRQ packets
reg_cmd_info.drqPackets ++ ;
// determine the number of sectors to transfer
wordCnt = multiCnt ? multiCnt : 1;
if ( wordCnt > numSect )
wordCnt = numSect;
wordCnt = wordCnt * 256;
// Do the REP INSW to read the data for one DRQ block.
reg_cmd_info.totalBytesXfer += ( wordCnt << 1 );
pio_drq_block_in( CB_DATA, bufAddr, wordCnt );
DELAY400NS; // delay so device can get the status updated
// Note: The drive should have dropped DATA REQUEST by now. If there
// are more sectors to transfer, BUSY should be active now (unless
// there is an error).
// Decrement the count of sectors to be transferred
// and increment buffer address.
numSect = numSect - ( multiCnt ? multiCnt : 1 );
bufAddr = bufAddr + ( 512 * ( multiCnt ? multiCnt : 1 ) );
}
// So was there any error condition?
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 31;
break; // go to READ_DONE
}
// DRQ should have been set -- was it?
if ( ( status & CB_STAT_DRQ ) == 0 )
{
reg_cmd_info.ec = 32;
break; // go to READ_DONE
}
// If all of the requested sectors have been transferred, make a
// few more checks before we exit.
if ( numSect < 1 )
{
// Since the drive has transferred all of the requested sectors
// without error, the drive should not have BUSY, DEVICE FAULT,
// DATA REQUEST or ERROR active now.
status = pio_inbyte( CB_STAT );
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 33;
break; // go to READ_DONE
}
// All sectors have been read without error, go to READ_DONE.
break; // go to READ_DONE
}
// This is the end of the read loop. If we get here, the loop is
// repeated to read the next sector. Go back to READ_LOOP.
}
// BMIDE Error=1?
if ( pio_readBusMstrStatus() & BM_SR_MASK_ERR )
{
reg_cmd_info.ec = 78; // yes
}
// READ_DONE:
// All done. The return values of this function are described in
// MINDRVR.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//*************************************************************
//
// reg_pio_data_in_lba28() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
int reg_pio_data_in_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba,
unsigned char * bufAddr,
long numSect, int multiCnt )
{
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
reg_cmd_info.lbaSize = LBA28;
reg_cmd_info.lbaHigh = 0L;
reg_cmd_info.lbaLow = lba;
// these commands transfer only 1 sector
if ( ( cmd == CMD_IDENTIFY_DEVICE )
|| ( cmd == CMD_IDENTIFY_DEVICE_PACKET )
)
numSect = 1;
// adjust multiple count
if ( multiCnt & 0x0800 )
{
// assume caller knows what they are doing
multiCnt &= 0x00ff;
}
else
{
// only Read Multiple uses multiCnt
if ( cmd != CMD_READ_MULTIPLE )
multiCnt = 1;
}
reg_cmd_info.ns = numSect;
reg_cmd_info.mc = multiCnt;
return exec_pio_data_in_cmd( dev, bufAddr, numSect, multiCnt );
}
//*************************************************************
//
// reg_pio_data_in_lba48() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
int reg_pio_data_in_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo,
unsigned char * bufAddr,
long numSect, int multiCnt )
{
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
reg_cmd_info.lbaSize = LBA48;
reg_cmd_info.lbaHigh = lbahi;
reg_cmd_info.lbaLow = lbalo;
// adjust multiple count
if ( multiCnt & 0x0800 )
{
// assume caller knows what they are doing
multiCnt &= 0x00ff;
}
else
{
// only Read Multiple Ext uses multiCnt
if ( cmd != CMD_READ_MULTIPLE_EXT )
multiCnt = 1;
}
reg_cmd_info.ns = numSect;
reg_cmd_info.mc = multiCnt;
return exec_pio_data_in_cmd( dev, bufAddr, numSect, multiCnt );
}
//*************************************************************
//
// exec_pio_data_out_cmd() - Execute a PIO Data Out command.
//
// See ATA-2 Section 9.4, ATA-3 Section 9.4,
// ATA-4 Section 8.7 Figure 11.
//
//*************************************************************
static int exec_pio_data_out_cmd( unsigned char dev,
unsigned char * bufAddr,
long numSect, int multiCnt );
static int exec_pio_data_out_cmd( unsigned char dev,
unsigned char * bufAddr,
long numSect, int multiCnt )
{
unsigned char status;
int loopFlag = 1;
long wordCnt;
// reset Bus Master Error bit
pio_writeBusMstrStatus( BM_SR_MASK_ERR );
// Set command time out.
tmr_set_timeout();
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
return 1;
}
// Set up all the registers except the command register.
sub_setup_command();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, reg_cmd_info.cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Wait for not BUSY or time out.
// Note: No interrupt is generated for the
// first sector of a write command.
while ( 1 )
{
status = pio_inbyte( CB_ASTAT );
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( tmr_chk_timeout() )
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 47;
loopFlag = 0;
break;
}
}
// This loop writes each sector.
while ( loopFlag )
{
// WRITE_LOOP:
//
// NOTE NOTE NOTE ... The primary status register (1f7) MUST NOT be
// read more than ONCE for each sector transferred! When the
// primary status register is read, the drive resets IRQ. The
// alternate status register (3f6) can be read any number of times.
// For correct results, transfer the 256 words (REP OUTSW), wait for
// interrupt and then read the primary status register. AS
// SOON as BOTH the primary status register has been read AND the
// last of the 256 words has been written, the drive is allowed to
// generate the next IRQ (newer and faster drives could generate
// the next IRQ in 50 microseconds or less). If the primary
// status register is read more than once, there is the possibility
// of a race between the drive and the software and the next IRQ
// could be reset before the system interrupt controller sees it.
// If BSY=0 and DRQ=1, transfer the data,
// even if we find out there is an error later.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == CB_STAT_DRQ )
{
// increment number of DRQ packets
reg_cmd_info.drqPackets ++ ;
// determine the number of sectors to transfer
wordCnt = multiCnt ? multiCnt : 1;
if ( wordCnt > numSect )
wordCnt = numSect;
wordCnt = wordCnt * 256;
// Do the REP OUTSW to write the data for one DRQ block.
reg_cmd_info.totalBytesXfer += ( wordCnt << 1 );
pio_drq_block_out( CB_DATA, bufAddr, wordCnt );
DELAY400NS; // delay so device can get the status updated
// Note: The drive should have dropped DATA REQUEST and
// raised BUSY by now.
// Decrement the count of sectors to be transferred
// and increment buffer address.
numSect = numSect - ( multiCnt ? multiCnt : 1 );
bufAddr = bufAddr + ( 512 * ( multiCnt ? multiCnt : 1 ) );
}
// So was there any error condition?
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 41;
break; // go to WRITE_DONE
}
// DRQ should have been set -- was it?
if ( ( status & CB_STAT_DRQ ) == 0 )
{
reg_cmd_info.ec = 42;
break; // go to WRITE_DONE
}
// Wait for interrupt -or- wait for not BUSY -or- wait for time out.
sub_wait_poll( 44, 45 );
// If polling or error read the status, otherwise
// get the status that was read by the interrupt handler.
if ( ( ! int_use_intr_flag ) || ( reg_cmd_info.ec ) )
status = pio_inbyte( CB_STAT );
else
status = int_ata_status;
// If there was a time out error, go to WRITE_DONE.
if ( reg_cmd_info.ec )
break; // go to WRITE_DONE
// If all of the requested sectors have been transferred, make a
// few more checks before we exit.
if ( numSect < 1 )
{
// Since the drive has transferred all of the sectors without
// error, the drive MUST not have BUSY, DEVICE FAULT, DATA REQUEST
// or ERROR status at this time.
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 43;
break; // go to WRITE_DONE
}
// All sectors have been written without error, go to WRITE_DONE.
break; // go to WRITE_DONE
}
//
// This is the end of the write loop. If we get here, the loop
// is repeated to write the next sector. Go back to WRITE_LOOP.
}
// BMIDE Error=1?
if ( pio_readBusMstrStatus() & BM_SR_MASK_ERR )
{
reg_cmd_info.ec = 78; // yes
}
// WRITE_DONE:
// All done. The return values of this function are described in
// MINDRVR.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//*************************************************************
//
// reg_pio_data_out_lba28() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
int reg_pio_data_out_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba,
unsigned char * bufAddr,
long numSect, int multiCnt )
{
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
reg_cmd_info.lbaSize = LBA28;
reg_cmd_info.lbaHigh = 0;
reg_cmd_info.lbaLow = lba;
// adjust multiple count
if ( multiCnt & 0x0800 )
{
// assume caller knows what they are doing
multiCnt &= 0x00ff;
}
else
{
// only Write Multiple and CFA Write Multiple W/O Erase uses multiCnt
if ( ( cmd != CMD_WRITE_MULTIPLE )
&& ( cmd != CMD_CFA_WRITE_MULTIPLE_WO_ERASE )
)
multiCnt = 1;
}
reg_cmd_info.ns = numSect;
reg_cmd_info.mc = multiCnt;
return exec_pio_data_out_cmd( dev, bufAddr, numSect, multiCnt );
}
//*************************************************************
//
// reg_pio_data_out_lba48() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
int reg_pio_data_out_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo,
unsigned char * bufAddr,
long numSect, int multiCnt )
{
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
reg_cmd_info.lbaSize = LBA48;
reg_cmd_info.lbaHigh = lbahi;
reg_cmd_info.lbaLow = lbalo;
// adjust multiple count
if ( multiCnt & 0x0800 )
{
// assume caller knows what they are doing
multiCnt &= 0x00ff;
}
else
{
// only Write Multiple Ext uses multiCnt
if ( cmd != CMD_WRITE_MULTIPLE_EXT )
multiCnt = 1;
}
reg_cmd_info.ns = numSect;
reg_cmd_info.mc = multiCnt;
return exec_pio_data_out_cmd( dev, bufAddr, numSect, multiCnt );
}
#if INCLUDE_ATAPI_PIO
//*************************************************************
//
// reg_packet() - Execute an ATAPI Packet (A0H) command.
//
// See ATA-4 Section 9.10, Figure 14.
//
//*************************************************************
int reg_packet( unsigned char dev,
unsigned int cpbc,
unsigned char * cdbBufAddr,
int dir,
long dpbc,
unsigned char * dataBufAddr )
{
unsigned char status;
unsigned int byteCnt;
long wordCnt;
// reset Bus Master Error bit
pio_writeBusMstrStatus( BM_SR_MASK_ERR );
// Make sure the command packet size is either 12 or 16
// and save the command packet size and data.
cpbc = cpbc < 12 ? 12 : cpbc;
cpbc = cpbc > 12 ? 16 : cpbc;
// Setup current command information.
reg_cmd_info.cmd = CMD_PACKET;
reg_cmd_info.fr = 0;
reg_cmd_info.sc = 0;
reg_cmd_info.sn = 0;
reg_cmd_info.cl = (unsigned char) ( dpbc & 0x00ff );
reg_cmd_info.ch = ( unsigned char) ( ( dpbc & 0xff00 ) >> 8 );
reg_cmd_info.dh = (unsigned char) ( dev ? CB_DH_DEV1 : CB_DH_DEV0 );
reg_cmd_info.dc = (unsigned char) ( int_use_intr_flag ? 0 : CB_DC_NIEN );
// Set command time out.
tmr_set_timeout();
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
return 1;
}
// Set up all the registers except the command register.
sub_setup_command();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, CMD_PACKET );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Command packet transfer...
// Poll Alternate Status for BSY=0.
while ( 1 )
{
status = pio_inbyte( CB_ASTAT ); // poll for not busy
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( tmr_chk_timeout() ) // time out yet ?
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 51;
dir = -1; // command done
break;
}
}
// Command packet transfer...
// Check for protocol failures... no interrupt here please!
// Command packet transfer...
// If no error, transfer the command packet.
if ( reg_cmd_info.ec == 0 )
{
// Command packet transfer...
// Read the primary status register and the other ATAPI registers.
status = pio_inbyte( CB_STAT );
// Command packet transfer...
// check status: must have BSY=0, DRQ=1 now
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ | CB_STAT_ERR ) )
!= CB_STAT_DRQ
)
{
reg_cmd_info.ec = 52;
dir = -1; // command done
}
else
{
// Command packet transfer...
// xfer the command packet (the cdb)
pio_drq_block_out( CB_DATA, cdbBufAddr, cpbc >> 1 );
DELAY400NS; // delay so device can get the status updated
}
}
// Data transfer loop...
// If there is no error, enter the data transfer loop.
while ( reg_cmd_info.ec == 0 )
{
// Data transfer loop...
// Wait for interrupt -or- wait for not BUSY -or- wait for time out.
sub_wait_poll( 53, 54 );
// Data transfer loop...
// If there was a time out error, exit the data transfer loop.
if ( reg_cmd_info.ec )
{
dir = -1; // command done
break;
}
// Data transfer loop...
// If using interrupts get the status read by the interrupt
// handler, otherwise read the status register.
if ( int_use_intr_flag )
status = int_ata_status;
else
status = pio_inbyte( CB_STAT );
// Data transfer loop...
// Exit the read data loop if the device indicates this
// is the end of the command.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == 0 )
{
dir = -1; // command done
break;
}
// Data transfer loop...
// The device must want to transfer data...
// check status: must have BSY=0, DRQ=1 now.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) != CB_STAT_DRQ )
{
reg_cmd_info.ec = 55;
dir = -1; // command done
break;
}
// Data transfer loop...
// get the byte count, check for zero...
byteCnt = ( pio_inbyte( CB_CH ) << 8 ) | pio_inbyte( CB_CL );
if ( byteCnt < 1 )
{
reg_cmd_info.ec = 59;
dir = -1; // command done
break;
}
// Data transfer loop...
// increment number of DRQ packets
reg_cmd_info.drqPackets ++ ;
// Data transfer loop...
// transfer the data and update the i/o buffer address
// and the number of bytes transfered.
wordCnt = ( byteCnt >> 1 ) + ( byteCnt & 0x0001 );
reg_cmd_info.totalBytesXfer += ( wordCnt << 1 );
if ( dir )
pio_drq_block_out( CB_DATA, dataBufAddr, wordCnt );
else
pio_drq_block_in( CB_DATA, dataBufAddr, wordCnt );
dataBufAddr = dataBufAddr + byteCnt;
DELAY400NS; // delay so device can get the status updated
}
// End of command...
// Wait for interrupt or poll for BSY=0,
// but don't do this if there was any error or if this
// was a commmand that did not transfer data.
if ( ( reg_cmd_info.ec == 0 ) && ( dir >= 0 ) )
{
sub_wait_poll( 56, 57 );
}
// Final status check, only if no previous error.
if ( reg_cmd_info.ec == 0 )
{
// Final status check...
// If using interrupts get the status read by the interrupt
// handler, otherwise read the status register.
if ( int_use_intr_flag )
status = int_ata_status;
else
status = pio_inbyte( CB_STAT );
// Final status check...
// check for any error.
if ( status & ( CB_STAT_BSY | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 58;
}
}
// Done...
// Final status check
// BMIDE Error=1?
if ( pio_readBusMstrStatus() & BM_SR_MASK_ERR )
{
reg_cmd_info.ec = 78; // yes
}
// All done. The return values of this function are described in
// MINDRVR.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
#endif // INCLUDE_ATAPI
#if INCLUDE_ATA_DMA
//***********************************************************
//
// Some notes about PCI bus mastering DMA...
//
// !!! The DMA support in MINDRVR is based on x86 PCI bus mastering
// !!! ATA controller design as described by the T13 document
// !!! '1510 Host Controller Standard' (in sections 1-6).
//
// Note that the T13 1510D document also describes a
// complex DMA engine called ADMA. While ADMA is a good idea it
// will probably never be popular or widely implemented. MINDRVR
// does not support ADMA.
//
// The base address of the Bus Master Control Registers (BMIDE) is
// found in the PCI Configuration space for the ATA controller (at
// offset 0x20 in the config space data). This is normally an I/O
// address.
//
// The BMIDE data is 16 bytes of data starting at the BMIDE base
// address. The first 8 bytes is for the primary ATA channel and
// the second 8 bytes is for the secondary ATA channel. The 8 bytes
// contain a "command" byte and a "status" byte and a 4 byte
// (32-bit) physical memory address pointing to the Physical Region
// Descriptor (PRD) list. Each PRD entry describes an area of
// memory or data buffer for the DMA transfer. A region described
// by a PRD may not cross a 64K byte boundary in physical memory.
// Also, the PRD list must not cross a 64K byte boundary.
//
//***********************************************************
//***********************************************************
//
// pci bus master registers and PRD list buffer,
// see the dma_pci_config() and set_up_xfer() functions.
//
// !!! Note that the PRD buffer is statically allocated here
// !!! but the actual address of the buffer is adjusted by
// !!! the dma_pci_config() function.
//
//***********************************************************
static unsigned long * dma_pci_prd_ptr; // current PRD buffer address
static int dma_pci_num_prd; // current number of PRD entries
static unsigned char statReg; // save BM status reg bits
static unsigned char rwControl; // read/write control bit setting
#define MAX_TRANSFER_SIZE 262144L // max transfer size (in bytes,
// should be multiple of 65536)
#define MAX_SEG ((MAX_TRANSFER_SIZE/65536L)+2L) // number physical segments
#define MAX_PRD (MAX_SEG*4L) // number of PRDs required
#define PRD_BUF_SIZE (48+(2*MAX_PRD*8)) // size of PRD list buffer
static unsigned char prdBuf[PRD_BUF_SIZE]; // PRD buffer
static unsigned long * prdBufPtr; // first PRD addr
//***********************************************************
//
// dma_pci_config() - configure/setup for Read/Write DMA
//
// The caller must call this function before attempting
// to use any ATA or ATAPI commands in PCI DMA mode.
//
// !!! MINDRVR assumes the entire DMA data transfer is contained
// !!! within a single contiguous I/O buffer. You may not need
// !!! the dma_pci_config() function depending on how your system
// !!! allocates the PRD buffer.
//
// !!! This function shows an example of PRD buffer allocation.
// !!! The PRD buffer must be aligned
// !!! on a 8 byte boundary and must not cross a 64K byte
// !!! boundary in memory.
//
//***********************************************************
int dma_pci_config( void )
{
unsigned long lw;
// Set up the PRD entry list buffer address - the PRD entry list
// may not span a 64KB boundary in physical memory. Space is
// allocated (above) for this buffer such that it will be
// aligned on a seqment boundary
// and such that the PRD list will not span a 64KB boundary...
lw = (unsigned long) prdBuf;
// ...move up to an 8 byte boundary.
lw = lw + 15;
lw = lw & 0xfffffff8L;
// ...check for 64KB boundary in the first part of the PRD buffer,
// ...if so just move the buffer to that boundary.
if ( ( lw & 0xffff0000L )
!=
( ( lw + ( MAX_PRD * 8L ) - 1L ) & 0xffff0000L )
)
lw = ( lw + ( MAX_PRD * 8L ) ) & 0xffff0000L;
// ... return the address of the first PRD
dma_pci_prd_ptr = prdBufPtr = (unsigned long *) lw;
// ... return the current number of PRD entries
dma_pci_num_prd = 0;
// read the BM status reg and save the upper 3 bits.
statReg = (unsigned char) ( pio_readBusMstrStatus() & 0x60 );
return 0;
}
//***********************************************************
//
// set_up_xfer() -- set up the PRD entry list
//
// !!! MINDRVR assumes the entire DMA data transfer is contained
// !!! within a single contiguous I/O buffer. You may not need
// !!! a much more complex set_up_xfer() function to support
// !!! true scatter/gather lists.
//
// The PRD list must be aligned on an 8 byte boundary and the
// list must not cross a 64K byte boundary in memory.
//
//***********************************************************
static int set_up_xfer( int dir, long bc, unsigned char * bufAddr );
static int set_up_xfer( int dir, long bc, unsigned char * bufAddr )
{
int numPrd; // number of PRD required
int maxPrd; // max number of PRD allowed
unsigned long temp;
unsigned long phyAddr; // physical memory address
unsigned long * prdPtr; // pointer to PRD entry list
// disable/stop the dma channel, clear interrupt and error bits
pio_writeBusMstrCmd( BM_CR_MASK_STOP );
pio_writeBusMstrStatus( (unsigned char) ( statReg | BM_SR_MASK_INT | BM_SR_MASK_ERR ) );
// setup to build the PRD list...
// ...max PRDs allowed
maxPrd = (int) MAX_PRD;
// ...PRD buffer address
prdPtr = prdBufPtr;
dma_pci_prd_ptr = prdPtr;
// ... convert I/O buffer address to an physical memory address
phyAddr = (unsigned long) bufAddr;
// build the PRD list...
// ...PRD entry format:
// +0 to +3 = memory address
// +4 to +5 = 0x0000 (not EOT) or 0x8000 (EOT)
// +6 to +7 = byte count
// ...zero number of PRDs
numPrd = 0;
// ...loop to build each PRD
while ( bc > 0 )
{
if ( numPrd >= maxPrd )
return 1;
// set this PRD's address
prdPtr[0] = phyAddr;
// set count for this PRD
temp = 65536L; // max PRD length
if ( temp > bc ) // count to large?
temp = bc; // yes - use actual count
// check if count will fit
phyAddr = phyAddr + temp;
if ( ( phyAddr & 0xffff0000L ) != ( prdPtr[0] & 0xffff0000L ) )
{
phyAddr = phyAddr & 0xffff0000L;
temp = phyAddr - prdPtr[0];
}
// set this PRD's count
prdPtr[1] = temp & 0x0000ffffL;
// update byte count
bc = bc - temp;
// set the end bit in the prd list
if ( bc < 1 )
prdPtr[1] = prdPtr[1] | 0x80000000L;
prdPtr ++ ;
prdPtr ++ ;
numPrd ++ ;
}
// return the current PRD list size and
// write into BMIDE PRD address registers.
dma_pci_num_prd = numPrd;
* (unsigned long *) (pio_bmide_base_addr + BM_PRD_ADDR_LOW )
= (unsigned long) prdBufPtr;
// set the read/write control:
// PCI reads for ATA Write DMA commands,
// PCI writes for ATA Read DMA commands.
if ( dir )
rwControl = BM_CR_MASK_READ; // ATA Write DMA
else
rwControl = BM_CR_MASK_WRITE; // ATA Read DMA
pio_writeBusMstrCmd( rwControl );
return 0;
}
//***********************************************************
//
// exec_pci_ata_cmd() - PCI Bus Master for ATA R/W DMA commands
//
//***********************************************************
static int exec_pci_ata_cmd( unsigned char dev,
unsigned char * bufAddr,
long numSect );
static int exec_pci_ata_cmd( unsigned char dev,
unsigned char * bufAddr,
long numSect )
{
unsigned char status;
// Quit now if the command is incorrect.
if ( ( reg_cmd_info.cmd != CMD_READ_DMA )
&& ( reg_cmd_info.cmd != CMD_READ_DMA_EXT )
&& ( reg_cmd_info.cmd != CMD_WRITE_DMA )
&& ( reg_cmd_info.cmd != CMD_WRITE_DMA_EXT ) )
{
reg_cmd_info.ec = 77;
return 1;
}
// Set up the dma transfer
if ( set_up_xfer( ( reg_cmd_info.cmd == CMD_WRITE_DMA )
||
( reg_cmd_info.cmd == CMD_WRITE_DMA_EXT ),
numSect * 512L, bufAddr ) )
{
reg_cmd_info.ec = 61;
return 1;
}
// Set command time out.
tmr_set_timeout();
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
return 1;
}
// Set up all the registers except the command register.
sub_setup_command();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, reg_cmd_info.cmd );
// The drive should start executing the command including any
// data transfer.
// Data transfer...
// read the BMIDE regs
// enable/start the dma channel.
// read the BMIDE regs again
pio_readBusMstrCmd();
pio_readBusMstrStatus();
pio_writeBusMstrCmd( (unsigned char) ( rwControl | BM_CR_MASK_START ) );
pio_readBusMstrCmd();
pio_readBusMstrStatus();
// Data transfer...
// the device and dma channel transfer the data here while we start
// checking for command completion...
// wait for the PCI BM Interrupt=1 (see ATAIOINT.C)...
if ( tmr_chk_timeout() ) // time out ?
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 73;
}
// End of command...
// disable/stop the dma channel
status = int_bmide_status; // read BM status
status &= ~ BM_SR_MASK_ACT; // ignore Active bit
pio_writeBusMstrCmd( BM_CR_MASK_STOP ); // shutdown DMA
pio_readBusMstrCmd(); // read BM cmd (just for trace)
status |= pio_readBusMstrStatus(); // read BM status again
if ( reg_cmd_info.ec == 0 )
{
if ( status & BM_SR_MASK_ERR ) // bus master error?
{
reg_cmd_info.ec = 78; // yes
}
}
if ( reg_cmd_info.ec == 0 )
{
if ( status & BM_SR_MASK_ACT ) // end of PRD list?
{
reg_cmd_info.ec = 71; // no
}
}
// End of command...
// If no error use the Status register value that was read
// by the interrupt handler. If there was an error
// read the Status register because it may not have been
// read by the interrupt handler.
if ( reg_cmd_info.ec )
status = pio_inbyte( CB_STAT );
else
status = int_ata_status;
// Final status check...
// if no error, check final status...
// Error if BUSY, DEVICE FAULT, DRQ or ERROR status now.
if ( reg_cmd_info.ec == 0 )
{
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 74;
}
}
// Final status check...
// if any error, update total bytes transferred.
if ( reg_cmd_info.ec == 0 )
reg_cmd_info.totalBytesXfer = numSect * 512L;
else
reg_cmd_info.totalBytesXfer = 0L;
// All done. The return values of this function are described in
// MINDRVR.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//***********************************************************
//
// dma_pci_lba28() - DMA in PCI Multiword for ATA R/W DMA
//
//***********************************************************
int dma_pci_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba,
unsigned char * bufAddr,
long numSect )
{
// Setup current command information.
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = 0x00; // nIEN=0 required on PCI !
reg_cmd_info.ns = numSect;
reg_cmd_info.lbaSize = LBA28;
reg_cmd_info.lbaHigh = 0L;
reg_cmd_info.lbaLow = lba;
// Execute the command.
return exec_pci_ata_cmd( dev, bufAddr, numSect );
}
//***********************************************************
//
// dma_pci_lba48() - DMA in PCI Multiword for ATA R/W DMA
//
//***********************************************************
int dma_pci_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo,
unsigned char * bufAddr,
long numSect )
{
// Setup current command information.
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr = fr;
reg_cmd_info.sc = sc;
reg_cmd_info.dh = (unsigned char) ( CB_DH_LBA | ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
reg_cmd_info.dc = 0x00; // nIEN=0 required on PCI !
reg_cmd_info.ns = numSect;
reg_cmd_info.lbaSize = LBA48;
reg_cmd_info.lbaHigh = lbahi;
reg_cmd_info.lbaLow = lbalo;
// Execute the command.
return exec_pci_ata_cmd( dev, bufAddr, numSect );
}
#endif // INCLUDE_ATA_DMA
#if INCLUDE_ATAPI_DMA
//***********************************************************
//
// dma_pci_packet() - PCI Bus Master for ATAPI Packet command
//
//***********************************************************
int dma_pci_packet( unsigned char dev,
unsigned int cpbc,
unsigned char * cdbBufAddr,
int dir,
long dpbc,
unsigned char * dataBufAddr )
{
unsigned char status;
// Make sure the command packet size is either 12 or 16
// and save the command packet size and data.
cpbc = cpbc < 12 ? 12 : cpbc;
cpbc = cpbc > 12 ? 16 : cpbc;
// Setup current command information.
reg_cmd_info.cmd = CMD_PACKET;
reg_cmd_info.fr = 0x01; // packet DMA mode !
reg_cmd_info.sc = 0;
reg_cmd_info.sn = 0;
reg_cmd_info.cl = 0; // no Byte Count Limit in DMA !
reg_cmd_info.ch = 0; // no Byte Count Limit in DMA !
reg_cmd_info.dh = (unsigned char) ( dev ? CB_DH_DEV1 : CB_DH_DEV0 );
reg_cmd_info.dc = 0x00; // nIEN=0 required on PCI !
// the data packet byte count must be even
// and must not be zero
if ( dpbc & 1L )
dpbc ++ ;
if ( dpbc < 2L )
dpbc = 2L;
// Set up the dma transfer
if ( set_up_xfer( dir, dpbc, dataBufAddr ) )
{
reg_cmd_info.ec = 61;
return 1;
}
// Set command time out.
tmr_set_timeout();
// Select the drive - call the reg_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
return 1;
}
// Set up all the registers except the command register.
sub_setup_command();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, CMD_PACKET );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not started the
// command yet.
DELAY400NS;
// Command packet transfer...
// Poll Alternate Status for BSY=0.
while ( 1 )
{
status = pio_inbyte( CB_ASTAT ); // poll for not busy
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( tmr_chk_timeout() ) // time out yet ?
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 75;
break;
}
}
// Command packet transfer...
// Check for protocol failures... no interrupt here please!
// Command packet transfer...
// If no error, transfer the command packet.
if ( reg_cmd_info.ec == 0 )
{
// Command packet transfer...
// Read the primary status register and the other ATAPI registers.
status = pio_inbyte( CB_STAT );
// Command packet transfer...
// check status: must have BSY=0, DRQ=1 now
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ | CB_STAT_ERR ) )
!= CB_STAT_DRQ
)
{
reg_cmd_info.ec = 76;
}
else
{
// Command packet transfer...
// xfer the command packet (the cdb)
pio_drq_block_out( CB_DATA, cdbBufAddr, cpbc >> 1 );
}
}
// Data transfer...
// The drive should start executing the command
// including any data transfer.
// If no error, set up and start the DMA,
// and wait for the DMA to complete.
if ( reg_cmd_info.ec == 0 )
{
// Data transfer...
// read the BMIDE regs
// enable/start the dma channel.
// read the BMIDE regs again
pio_readBusMstrCmd();
pio_readBusMstrStatus();
pio_writeBusMstrCmd( (unsigned char) ( rwControl | BM_CR_MASK_START ) );
pio_readBusMstrCmd();
pio_readBusMstrStatus();
// Data transfer...
// the device and dma channel transfer the data here while we start
// checking for command completion...
// wait for the PCI BM Active=0 and Interrupt=1 or PCI BM Error=1...
if ( tmr_chk_timeout() ) // time out ?
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 73;
}
// End of command...
// disable/stop the dma channel
status = int_bmide_status; // read BM status
status &= ~ BM_SR_MASK_ACT; // ignore Active bit
pio_writeBusMstrCmd( BM_CR_MASK_STOP ); // shutdown DMA
pio_readBusMstrCmd(); // read BM cmd (just for trace)
status |= pio_readBusMstrStatus(); // read BM statu again
}
if ( reg_cmd_info.ec == 0 )
{
if ( status & ( BM_SR_MASK_ERR ) ) // bus master error?
{
reg_cmd_info.ec = 78; // yes
}
if ( ( status & BM_SR_MASK_ACT ) ) // end of PRD list?
{
reg_cmd_info.ec = 71; // no
}
}
// End of command...
// If no error use the Status register value that was read
// by the interrupt handler. If there was an error
// read the Status register because it may not have been
// read by the interrupt handler.
if ( reg_cmd_info.ec )
status = pio_inbyte( CB_STAT );
else
status = int_ata_status;
// Final status check...
// if no error, check final status...
// Error if BUSY, DRQ or ERROR status now.
if ( reg_cmd_info.ec == 0 )
{
if ( status & ( CB_STAT_BSY | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 74;
}
}
// Final status check...
// if any error, update total bytes transferred.
if ( reg_cmd_info.ec == 0 )
reg_cmd_info.totalBytesXfer = dpbc;
else
reg_cmd_info.totalBytesXfer = 0L;
// All done. The return values of this function are described in
// MINDRVR.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
#endif // INCLUDE_ATAPI_DMA
//*************************************************************
//
// sub_setup_command() -- setup the command parameters
// in FR, SC, SN, CL, CH and DH.
//
//*************************************************************
static void sub_setup_command( void )
{
// output DevCtrl - same for all devices and commands
pio_outbyte( CB_DC, reg_cmd_info.dc );
// output command parameters
if ( reg_cmd_info.lbaSize == LBA28 )
{
// in ATA LBA28 mode
pio_outbyte( CB_FR, (unsigned char) reg_cmd_info.fr );
pio_outbyte( CB_SC, (unsigned char) reg_cmd_info.sc );
pio_outbyte( CB_SN, (unsigned char) reg_cmd_info.lbaLow );
pio_outbyte( CB_CL, (unsigned char) ( reg_cmd_info.lbaLow >> 8 ) );
pio_outbyte( CB_CH, (unsigned char) ( reg_cmd_info.lbaLow >> 16 ) );
pio_outbyte( CB_DH, (unsigned char) ( ( reg_cmd_info.dh & 0xf0 )
| ( ( reg_cmd_info.lbaLow >> 24 ) & 0x0f ) ) );
}
else
if ( reg_cmd_info.lbaSize == LBA48 )
{
// in ATA LBA48 mode
pio_outbyte( CB_FR, (unsigned char) ( reg_cmd_info.fr >> 8 ) );
pio_outbyte( CB_SC, (unsigned char) ( reg_cmd_info.sc >> 8 ) );
pio_outbyte( CB_SN, (unsigned char) ( reg_cmd_info.lbaLow >> 24 ) );
pio_outbyte( CB_CL, (unsigned char) reg_cmd_info.lbaHigh );
pio_outbyte( CB_CH, (unsigned char) ( reg_cmd_info.lbaHigh >> 8 ) );
pio_outbyte( CB_FR, (unsigned char) reg_cmd_info.fr );
pio_outbyte( CB_SC, (unsigned char) reg_cmd_info.sc );
pio_outbyte( CB_SN, (unsigned char) reg_cmd_info.lbaLow );
pio_outbyte( CB_CL, (unsigned char) ( reg_cmd_info.lbaLow >> 8 ) );
pio_outbyte( CB_CH, (unsigned char) ( reg_cmd_info.lbaLow >> 16 ) );
pio_outbyte( CB_DH, reg_cmd_info.dh );
}
else
{
// for ATAPI PACKET command
pio_outbyte( CB_FR, (unsigned char) reg_cmd_info.fr );
pio_outbyte( CB_SC, (unsigned char) reg_cmd_info.sc );
pio_outbyte( CB_SN, (unsigned char) reg_cmd_info.sn );
pio_outbyte( CB_CL, (unsigned char) reg_cmd_info.cl );
pio_outbyte( CB_CH, (unsigned char) reg_cmd_info.ch );
pio_outbyte( CB_DH, reg_cmd_info.dh );
}
}
//*************************************************************
//
// sub_trace_command() -- trace the end of a command.
//
//*************************************************************
static void sub_trace_command( void )
{
reg_cmd_info.st = pio_inbyte( CB_STAT );
reg_cmd_info.as = pio_inbyte( CB_ASTAT );
reg_cmd_info.er = pio_inbyte( CB_ERR );
// !!! if you want to read back the other device registers
// !!! at the end of a command then this is the place to do
// !!! it. The code here is just and example of out this is
// !!! done on a little endian system like an x86.
#if 0 // read back other registers
{
unsigned long lbaHigh;
unsigned long lbaLow;
unsigned char sc48[2];
unsigned char lba48[8];
lbaHigh = 0;
lbaLow = 0;
if ( reg_cmd_info.lbaSize == LBA48 )
{
// read back ATA LBA48...
sc48[0] = pio_inbyte( CB_SC );
lba48[0] = pio_inbyte( CB_SN );
lba48[1] = pio_inbyte( CB_CL );
lba48[2] = pio_inbyte( CB_CH );
pio_outbyte( CB_DC, CB_DC_HOB );
sc48[1] = pio_inbyte( CB_SC );
lba48[3] = pio_inbyte( CB_SN );
lba48[4] = pio_inbyte( CB_CL );
lba48[5] = pio_inbyte( CB_CH );
lba48[6] = 0;
lba48[7] = 0;
lbaHigh = * (unsigned long *) ( lba48 + 4 );
lbaLow = * (unsigned long *) ( lba48 + 0 );
}
else
if ( reg_cmd_info.lbaSize == LBA28 )
{
// read back ATA LBA28
lbaLow = pio_inbyte( CB_DH );
lbaLow = lbaLow << 8;
lbaLow = lbaLow | pio_inbyte( CB_CH );
lbaLow = lbaLow << 8;
lbaLow = lbaLow | pio_inbyte( CB_CL );
lbaLow = lbaLow << 8;
lbaLow = lbaLow | pio_inbyte( CB_SN );
}
else
{
// really no reason to read back for ATAPI
}
}
#endif // read back other registers
}
//*************************************************************
//
// sub_select() - function used to select a drive.
//
// Function to select a drive making sure that BSY=0 and DRQ=0.
//
//**************************************************************
static int sub_select( unsigned char dev )
{
unsigned char status;
// PAY ATTENTION HERE
// The caller may want to issue a command to a device that doesn't
// exist (for example, Exec Dev Diag), so if we see this,
// just select that device, skip all status checking and return.
// We assume the caller knows what they are doing!
if ( reg_config_info[dev] < REG_CONFIG_TYPE_ATA )
{
// select the device and return
pio_outbyte( CB_DH, (unsigned char) ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
DELAY400NS;
return 0;
}
// The rest of this is the normal ATA stuff for device selection
// and we don't expect the caller to be selecting a device that
// does not exist.
// We don't know which drive is currently selected but we should
// wait BSY=0 and DRQ=0. Normally both BSY=0 and DRQ=0
// unless something is very wrong!
while ( 1 )
{
status = pio_inbyte( CB_STAT );
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == 0 )
break;
if ( tmr_chk_timeout() )
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 11;
reg_cmd_info.st = status;
reg_cmd_info.as = pio_inbyte( CB_ASTAT );
reg_cmd_info.er = pio_inbyte( CB_ERR );
return 1;
}
}
// Here we select the drive we really want to work with by
// setting the DEV bit in the Drive/Head register.
pio_outbyte( CB_DH, (unsigned char) ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) );
DELAY400NS;
// Wait for the selected device to have BSY=0 and DRQ=0.
// Normally the drive should be in this state unless
// something is very wrong (or initial power up is still in
// progress).
while ( 1 )
{
status = pio_inbyte( CB_STAT );
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == 0 )
break;
if ( tmr_chk_timeout() )
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = 12;
reg_cmd_info.st = status;
reg_cmd_info.as = pio_inbyte( CB_ASTAT );
reg_cmd_info.er = pio_inbyte( CB_ERR );
return 1;
}
}
// All done. The return values of this function are described in
// ATAIO.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//*************************************************************
//
// sub_wait_poll() - wait for interrupt or poll for BSY=0
//
//*************************************************************
static void sub_wait_poll( unsigned char we, unsigned char pe )
{
unsigned char status;
// Wait for interrupt -or- wait for not BUSY -or- wait for time out.
if ( we && int_use_intr_flag )
{
if ( tmr_chk_timeout() ) // time out ?
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = we;
}
}
else
{
while ( 1 )
{
status = pio_inbyte( CB_ASTAT ); // poll for not busy
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( tmr_chk_timeout() ) // time out yet ?
{
reg_cmd_info.to = 1;
reg_cmd_info.ec = pe;
break;
}
}
}
}
//***********************************************************
//
// functions used to read/write the BMIDE registers
//
//***********************************************************
static unsigned char pio_readBusMstrCmd( void )
{
unsigned char x;
if ( ! pio_bmide_base_addr )
return 0;
x = inb (pio_bmide_base_addr + BM_COMMAND_REG );
return x;
}
static unsigned char pio_readBusMstrStatus( void )
{
unsigned char x;
if ( ! pio_bmide_base_addr )
return 0;
x = inb( pio_bmide_base_addr + BM_STATUS_REG );
return x;
}
static void pio_writeBusMstrCmd( unsigned char x )
{
if ( ! pio_bmide_base_addr )
return;
outb(( pio_bmide_base_addr + BM_COMMAND_REG ), x);
}
static void pio_writeBusMstrStatus( unsigned char x )
{
if ( ! pio_bmide_base_addr )
return;
outb(( pio_bmide_base_addr + BM_STATUS_REG ), x);
}
//*************************************************************
//
// These functions do basic IN/OUT of byte and word values:
//
// pio_inbyte()
// pio_outbyte()
// pio_inword()
// pio_outword()
//
//*************************************************************
/*
static unsigned char pio_inbyte( unsigned char addr )
{
//!!! read an 8-bit ATA register
return * pio_reg_addrs[ addr ];
}
//*************************************************************
static void pio_outbyte( int addr, unsigned char data )
{
//!!! write an 8-bit ATA register
* pio_reg_addrs[ addr ] = data;
}
//*************************************************************
static unsigned int pio_inword( unsigned char addr )
{
//!!! read an 8-bit ATA register (usually the ATA Data register)
return * ( (unsigned int *) pio_reg_addrs[ addr ] );
}
//*************************************************************
static void pio_outword( int addr, unsigned int data )
{
//!!! Write an 8-bit ATA register (usually the ATA Data register)
* ( (unsigned int *) pio_reg_addrs[ addr ] ) = data;
}
//*************************************************************
static unsigned long pio_indword( unsigned char addr )
{
//!!! read an 8-bit ATA register (usually the ATA Data register)
return * ( (unsigned long *) pio_reg_addrs[ addr ] );
}
//*************************************************************
static void pio_outdword( int addr, unsigned long data )
{
//!!! Write an 8-bit ATA register (usually the ATA Data register)
* ( (unsigned long *) pio_reg_addrs[ addr ] ) = data;
}
*/
unsigned char pio_inbyte( unsigned char addr )
{
//!!! read an 8-bit ATA register
return inb((unsigned int)pio_reg_addrs[ addr ]);
}
//*************************************************************
void pio_outbyte( int addr, unsigned char data )
{
//!!! write an 8-bit ATA register
outb((unsigned int)pio_reg_addrs[ addr ], data);
}
//*************************************************************
static unsigned int pio_inword( unsigned char addr )
{
//!!! read an 8-bit ATA register (usually the ATA Data register)
return inw((unsigned int)pio_reg_addrs[ addr ] );
}
//*************************************************************
static void pio_outword( int addr, unsigned int data )
{
//!!! Write an 8-bit ATA register (usually the ATA Data register)
outw((unsigned int)pio_reg_addrs[ addr ], data);
}
//*************************************************************
static unsigned long pio_indword( unsigned char addr )
{
//!!! read an 8-bit ATA register (usually the ATA Data register)
return inl((unsigned int)pio_reg_addrs[ addr ] );
}
//*************************************************************
static void pio_outdword( int addr, unsigned long data )
{
//!!! Write an 8-bit ATA register (usually the ATA Data register)
outl((unsigned int)pio_reg_addrs[ addr ], data);
}
//*************************************************************
//
// These functions are normally used to transfer DRQ blocks:
//
// pio_drq_block_in()
// pio_drq_block_out()
//
//*************************************************************
// Note: pio_drq_block_in() is the primary way perform PIO
// Data In transfers. It will handle 8-bit, 16-bit and 32-bit
// I/O based data transfers.
static void pio_drq_block_in( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt )
{
// NOTE: wordCnt is the size of a DRQ data block/packet
// in words. The maximum value of wordCnt is normally:
// a) For ATA, 16384 words or 32768 bytes (64 sectors,
// only with READ/WRITE MULTIPLE commands),
// b) For ATAPI, 32768 words or 65536 bytes
// (actually 65535 bytes plus a pad byte).
{
int pxw;
long wc;
// adjust pio_xfer_width - don't use DWORD if wordCnt is odd.
pxw = pio_xfer_width;
if ( ( pxw == 32 ) && ( wordCnt & 0x00000001L ) )
pxw = 16;
// Data transfer using INS instruction.
// Break the transfer into chunks of 32768 or fewer bytes.
while ( wordCnt > 0 )
{
if ( wordCnt > 16384L )
wc = 16384;
else
wc = wordCnt;
if ( pxw == 8 )
{
// do REP INS
pio_rep_inbyte( addrDataReg, bufAddr, wc * 2L );
}
else
if ( pxw == 32 )
{
// do REP INSD
pio_rep_indword( addrDataReg, bufAddr, wc / 2L );
}
else
{
// do REP INSW
pio_rep_inword( addrDataReg, bufAddr, wc );
}
bufAddr = bufAddr + ( wc * 2 );
wordCnt = wordCnt - wc;
}
}
return;
}
//*************************************************************
// Note: pio_drq_block_out() is the primary way perform PIO
// Data Out transfers. It will handle 8-bit, 16-bit and 32-bit
// I/O based data transfers.
static void pio_drq_block_out( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt )
{
// NOTE: wordCnt is the size of a DRQ data block/packet
// in words. The maximum value of wordCnt is normally:
// a) For ATA, 16384 words or 32768 bytes (64 sectors,
// only with READ/WRITE MULTIPLE commands),
// b) For ATAPI, 32768 words or 65536 bytes
// (actually 65535 bytes plus a pad byte).
{
int pxw;
long wc;
// adjust pio_xfer_width - don't use DWORD if wordCnt is odd.
pxw = pio_xfer_width;
if ( ( pxw == 32 ) && ( wordCnt & 0x00000001L ) )
pxw = 16;
// Data transfer using OUTS instruction.
// Break the transfer into chunks of 32768 or fewer bytes.
while ( wordCnt > 0 )
{
if ( wordCnt > 16384L )
wc = 16384;
else
wc = wordCnt;
if ( pxw == 8 )
{
// do REP OUTS
pio_rep_outbyte( addrDataReg, bufAddr, wc * 2L );
}
else
if ( pxw == 32 )
{
// do REP OUTSD
pio_rep_outdword( addrDataReg, bufAddr, wc / 2L );
}
else
{
// do REP OUTSW
pio_rep_outword( addrDataReg, bufAddr, wc );
}
bufAddr = bufAddr + ( wc * 2 );
wordCnt = wordCnt - wc;
}
}
return;
}
//*************************************************************
//
// These functions transfer PIO DRQ data blocks through the ATA
// Data register. On an x86 these functions would use the
// REP INS and REP OUTS instructions.
//
// pio_rep_inbyte()
// pio_rep_outbyte()
// pio_rep_inword()
// pio_rep_outword()
// pio_rep_indword()
// pio_rep_outdword()
//
// These functions can be called directly but usually they
// are called by the pio_drq_block_in() and pio_drq_block_out()
// functions to perform I/O mode transfers. See the
// pio_xfer_width variable!
//
//*************************************************************
static void pio_rep_inbyte( unsigned char addrDataReg,
unsigned char * bufAddr,
long byteCnt )
{
// Warning: Avoid calling this function with
// byteCnt > 32768 (transfers 32768 bytes).
// that bufOff is a value between 0 and 15 (0xf).
//!!! repeat read an 8-bit register (ATA Data register when
//!!! ATA status is BSY=0 DRQ=1). For example:
while ( byteCnt > 0 )
{
* bufAddr = pio_inbyte( addrDataReg );
bufAddr ++ ;
byteCnt -- ;
}
}
//*************************************************************
static void pio_rep_outbyte( unsigned char addrDataReg,
unsigned char * bufAddr,
long byteCnt )
{
// Warning: Avoid calling this function with
// byteCnt > 32768 (transfers 32768 bytes).
// that bufOff is a value between 0 and 15 (0xf).
//!!! repeat write an 8-bit register (ATA Data register when
//!!! ATA status is BSY=0 DRQ=1). For example:
while ( byteCnt > 0 )
{
pio_outbyte( addrDataReg, * bufAddr );
bufAddr ++ ;
byteCnt -- ;
}
}
//*************************************************************
static void pio_rep_inword( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt )
{
// Warning: Avoid calling this function with
// wordCnt > 16384 (transfers 32768 bytes).
//!!! repeat read a 16-bit register (ATA Data register when
//!!! ATA status is BSY=0 DRQ=1). For example:
while ( wordCnt > 0 )
{
* (unsigned int *) bufAddr = pio_inword( addrDataReg );
bufAddr += 2;
wordCnt -- ;
}
}
//*************************************************************
static void pio_rep_outword( unsigned char addrDataReg,
unsigned char * bufAddr,
long wordCnt )
{
// Warning: Avoid calling this function with
// wordCnt > 16384 (transfers 32768 bytes).
//!!! repeat write a 16-bit register (ATA Data register when
//!!! ATA status is BSY=0 DRQ=1). For example:
while ( wordCnt > 0 )
{
pio_outword( addrDataReg, * (unsigned int *) bufAddr );
bufAddr += 2;
wordCnt -- ;
}
}
//*************************************************************
static void pio_rep_indword( unsigned char addrDataReg,
unsigned char * bufAddr,
long dwordCnt )
{
// Warning: Avoid calling this function with
// dwordCnt > 8192 (transfers 32768 bytes).
//!!! repeat read a 32-bit register (ATA Data register when
//!!! ATA status is BSY=0 DRQ=1). For example:
while ( dwordCnt > 0 )
{
* (unsigned long *) bufAddr = pio_indword( addrDataReg );
bufAddr += 4;
dwordCnt -- ;
}
}
//*************************************************************
static void pio_rep_outdword( unsigned char addrDataReg,
unsigned char * bufAddr,
long dwordCnt )
{
// Warning: Avoid calling this function with
// dwordCnt > 8192 (transfers 32768 bytes).
//!!! repeat write a 32-bit register (ATA Data register when
//!!! ATA status is BSY=0 DRQ=1). For example:
while ( dwordCnt > 0 )
{
pio_outdword( addrDataReg, * (unsigned long *) bufAddr );
bufAddr += 4;
dwordCnt -- ;
}
}
//*************************************************************
//
// Command timing functions
//
//**************************************************************
//static long tmr_cmd_start_time; // command start time - see the
// tmr_set_timeout() and
// tmr_chk_timeout() functions.
//*************************************************************
//
// tmr_set_timeout() - get the command start time
//
//**************************************************************
static void tmr_set_timeout( void )
{
// get the command start time
tmr_cmd_start_time = time18();
}
//*************************************************************
//
// tmr_chk_timeout() - check for command timeout.
//
// Gives non-zero return if command has timed out.
//
//**************************************************************
static int tmr_chk_timeout( void )
{
long curTime;
// get current time
curTime = time18();
// timed out yet ?
if ( curTime >= ( tmr_cmd_start_time
+ ( TMR_TIME_OUT * SYSTEM_TIMER_TICKS_PER_SECOND ) ) )
return 1; // yes
// no timeout yet
return 0;
}
// end mindrvr.c
branches/prasys/i386/libsaio/mindrvr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
//********************************************************************
// MINIMUM ATA LOW LEVEL I/O DRIVER -- MINDRVR.H
//
// by Hale Landis (hlandis@ata-atapi.com)
//
// There is no copyright and there are no restrictions on the use
// of this ATA Low Level I/O Driver code. It is distributed to
// help other programmers understand how the ATA device interface
// works and it is distributed without any warranty. Use this
// code at your own risk.
//
// Minimum ATA Driver (MINDRVR) is a subset of ATADRVR. MINDRVR
// has a single header file and a single C file. MINDRVR can
// be used as the starting point for an ATADRVR for an embedded
// system. NOTE all the places in the MINDRVR.H and MINDRVR.C files
// where there is a comment containing the string "!!!".
//
// Use the header file mindrvr.h in any C files that call MINDRVR
// functions.
//
// This code is based on the ATA/ATAPI-4,-5 and -6 standards and
// on interviews with various ATA controller and drive designers.
//
// Note that MINDRVR does not support ATA CHS addressing.
//
// Most of the MINDRVR code is standard C code and should compile
// using any C compiler. It has been tested using Borland C/C++ 4.5.
//
// This C source file is the header file for the driver
// and is used in the MINDRVR.C files and must also be used
// by any program using the MINDRVR code/functions.
//********************************************************************
#define MIN_ATA_DRIVER_VERSION "0H"
//********************************************************************
//
// !!! What parts of MINDRVR do you want in your build?
//
//********************************************************************
#define INCLUDE_ATA_DMA 1 // not zero to include ATA_DMA
#define INCLUDE_ATAPI_PIO 1 // not zero to include ATAPI PIO
#define INCLUDE_ATAPI_DMA 1 // not zero to include ATAPI DMA
//********************************************************************
//
// !!! System specific functions and data you must supply
//
//********************************************************************
// You must supply a function that waits for an interrupt from the
// ATA controller. This function should return 0 when the interrupt
// is received and a non zero value if the interrupt is not received
// within the time out period.
/*
long tmr_time_out = 20L;
long tmr_cmd_start_time;
*/
//extern int SYSTEM_WAIT_INTR_OR_TIMEOUT( void );
extern unsigned int time18 ( void );
//extern long SYSTEM_READ_TIMER (void);
/*
int tmr_chk_timeout( void )
{
long curTime;
// get current time
curTime = time18();
// if we have passed midnight, restart
if ( curTime < tmr_cmd_start_time )
{
tmr_cmd_start_time = curTime;
return 0;
}
// timed out yet ?
if ( curTime >= ( tmr_cmd_start_time + ( tmr_time_out * 18L ) ) )
return 1; // yes
// no timeout yet
return 0;
}
void tmr_set_timeout( void )
{
// get the command start time
tmr_cmd_start_time = time18();
}
*/
// You must supply a function that returns a system timer value. This
// should be a value that increments at some constant rate.
// This defines the number of system timer ticks per second.
#define SYSTEM_TIMER_TICKS_PER_SECOND 18L
//********************************************************************
//
// !!! ATA controller hardware specific data
//
//********************************************************************
// ATA Command Block base address
// (the address of the ATA Data register)
//values is for secondary port
//#define PIO_BASE_ADDR1 ( (unsigned char *) 0x1f0 )
//#define PIO_BASE_ADDR1 ( (unsigned char *) 0xd600 )
// ATA Control Block base address
// (the address of the ATA DevCtrl
// and AltStatus registers)
//#define PIO_BASE_ADDR2 ( (unsigned char *) 0x3f6 )
//#define PIO_BASE_ADDR2 ( (unsigned char *) 0xd700 )
// BMIDE base address (address of
// the BMIDE Command register for
// the Primary or Secondary side of
// the PCI ATA controller)
//#define PIO_BMIDE_BASE_ADDR ( (unsigned char *) 0x0000 )
// Size of the ATA Data register - allowed values are 8, 16 and 32
#define PIO_DEFAULT_XFER_WIDTH 16
// Interrupts or polling mode - not zero to use interrrupts
// Note: Interrupt mode is required for DMA
#define INT_DEFAULT_INTERRUPT_MODE 0
// Command time out in seconds
#define TMR_TIME_OUT 20
//**************************************************************
//
// Data that MINDRVR makes available.
//
//**************************************************************
// public interrupt handler data
extern unsigned char int_ata_status; // ATA status read by interrupt handler
extern unsigned char int_bmide_status; // BMIDE status read by interrupt handler
// Interrupt or Polling mode flag.
extern unsigned char int_use_intr_flag; // not zero to use interrupts
// ATA Data register width (8, 16 or 32)
extern unsigned char pio_xfer_width;
extern unsigned char pio_inbyte( unsigned char addr );
extern void pio_outbyte( int addr, unsigned char data );
// Command and extended error information returned by the
// reg_reset(), reg_non_data_*(), reg_pio_data_in_*(),
// reg_pio_data_out_*(), reg_packet() and dma_pci_*() functions.
struct REG_CMD_INFO
{
// command code
unsigned char cmd; // command code
// command parameters
unsigned int fr; // feature (8 or 16 bits)
unsigned int sc; // sec cnt (8 or 16 bits)
unsigned int sn; // sec num (8 or 16 bits)
unsigned int cl; // cyl low (8 or 16 bits)
unsigned int ch; // cyl high (8 or 16 bits)
unsigned char dh; // device head
unsigned char dc; // device control
long ns; // actual sector count
int mc; // current multiple block setting
unsigned char lbaSize; // size of LBA used
#define LBACHS 0 // last command used ATA CHS (not supported by MINDRVR)
// -or- last command was ATAPI PACKET command
#define LBA28 28 // last command used ATA 28-bit LBA
#define LBA48 48 // last command used ATA 48-bit LBA
unsigned long lbaLow; // lower 32-bits of ATA LBA
unsigned long lbaHigh; // upper 32-bits of ATA LBA
// status and error regs
unsigned char st; // status reg
unsigned char as; // alt status reg
unsigned char er ; // error reg
// driver error codes
unsigned char ec; // detailed error code
unsigned char to; // not zero if time out error
// additional result info
long totalBytesXfer; // total bytes transfered
long drqPackets; // number of PIO DRQ packets
} ;
extern struct REG_CMD_INFO reg_cmd_info;
// Configuration data for device 0 and 1
// returned by the reg_config() function.
extern int reg_config_info[2];
#define REG_CONFIG_TYPE_NONE 0
#define REG_CONFIG_TYPE_UNKN 1
#define REG_CONFIG_TYPE_ATA 2
#define REG_CONFIG_TYPE_ATAPI 3
//**************************************************************
//
// Global defines -- ATA register and register bits.
// command block & control block regs
//
//**************************************************************
// These are the offsets into pio_reg_addrs[]
#define CB_DATA 0 // data reg in/out cmd_blk_base1+0
#define CB_ERR 1 // error in cmd_blk_base1+1
#define CB_FR 1 // feature reg out cmd_blk_base1+1
#define CB_SC 2 // sector count in/out cmd_blk_base1+2
#define CB_SN 3 // sector number in/out cmd_blk_base1+3
#define CB_CL 4 // cylinder low in/out cmd_blk_base1+4
#define CB_CH 5 // cylinder high in/out cmd_blk_base1+5
#define CB_DH 6 // device head in/out cmd_blk_base1+6
#define CB_STAT 7 // primary status in cmd_blk_base1+7
#define CB_CMD 7 // command out cmd_blk_base1+7
#define CB_ASTAT 8 // alternate status in ctrl_blk_base2+6
#define CB_DC 8 // device control out ctrl_blk_base2+6
// error reg (CB_ERR) bits
#define CB_ER_ICRC 0x80 // ATA Ultra DMA bad CRC
#define CB_ER_BBK 0x80 // ATA bad block
#define CB_ER_UNC 0x40 // ATA uncorrected error
#define CB_ER_MC 0x20 // ATA media change
#define CB_ER_IDNF 0x10 // ATA id not found
#define CB_ER_MCR 0x08 // ATA media change request
#define CB_ER_ABRT 0x04 // ATA command aborted
#define CB_ER_NTK0 0x02 // ATA track 0 not found
#define CB_ER_NDAM 0x01 // ATA address mark not found
#define CB_ER_P_SNSKEY 0xf0 // ATAPI sense key (mask)
#define CB_ER_P_MCR 0x08 // ATAPI Media Change Request
#define CB_ER_P_ABRT 0x04 // ATAPI command abort
#define CB_ER_P_EOM 0x02 // ATAPI End of Media
#define CB_ER_P_ILI 0x01 // ATAPI Illegal Length Indication
// ATAPI Interrupt Reason bits in the Sector Count reg (CB_SC)
#define CB_SC_P_TAG 0xf8 // ATAPI tag (mask)
#define CB_SC_P_REL 0x04 // ATAPI release
#define CB_SC_P_IO 0x02 // ATAPI I/O
#define CB_SC_P_CD 0x01 // ATAPI C/D
// bits 7-4 of the device/head (CB_DH) reg
#define CB_DH_LBA 0x40 // LBA bit
#define CB_DH_DEV0 0x00 // select device 0
#define CB_DH_DEV1 0x10 // select device 1
// #define CB_DH_DEV0 0xa0 // select device 0 (old definition)
// #define CB_DH_DEV1 0xb0 // select device 1 (old definition)
// status reg (CB_STAT and CB_ASTAT) bits
#define CB_STAT_BSY 0x80 // busy
#define CB_STAT_RDY 0x40 // ready
#define CB_STAT_DF 0x20 // device fault
#define CB_STAT_WFT 0x20 // write fault (old name)
#define CB_STAT_SKC 0x10 // seek complete (only SEEK command)
#define CB_STAT_SERV 0x10 // service (overlap/queued commands)
#define CB_STAT_DRQ 0x08 // data request
#define CB_STAT_CORR 0x04 // corrected (obsolete)
#define CB_STAT_IDX 0x02 // index (obsolete)
#define CB_STAT_ERR 0x01 // error (ATA)
#define CB_STAT_CHK 0x01 // check (ATAPI)
// device control reg (CB_DC) bits
#define CB_DC_HOB 0x80 // High Order Byte (48-bit LBA)
// #define CB_DC_HD15 0x00 // bit 3 is reserved
// #define CB_DC_HD15 0x08 // (old definition of bit 3)
#define CB_DC_SRST 0x04 // soft reset
#define CB_DC_NIEN 0x02 // disable interrupts
//**************************************************************
//
// Most mandtory and optional ATA commands
//
//**************************************************************
#define CMD_CFA_ERASE_SECTORS 0xC0
#define CMD_CFA_REQUEST_EXT_ERR_CODE 0x03
#define CMD_CFA_TRANSLATE_SECTOR 0x87
#define CMD_CFA_WRITE_MULTIPLE_WO_ERASE 0xCD
#define CMD_CFA_WRITE_SECTORS_WO_ERASE 0x38
#define CMD_CHECK_POWER_MODE1 0xE5
#define CMD_CHECK_POWER_MODE2 0x98
#define CMD_DEVICE_RESET 0x08
#define CMD_EXECUTE_DEVICE_DIAGNOSTIC 0x90
#define CMD_FLUSH_CACHE 0xE7
#define CMD_FLUSH_CACHE_EXT 0xEA
#define CMD_FORMAT_TRACK 0x50
#define CMD_IDENTIFY_DEVICE 0xEC
#define CMD_IDENTIFY_DEVICE_PACKET 0xA1
#define CMD_IDENTIFY_PACKET_DEVICE 0xA1
#define CMD_IDLE1 0xE3
#define CMD_IDLE2 0x97
#define CMD_IDLE_IMMEDIATE1 0xE1
#define CMD_IDLE_IMMEDIATE2 0x95
#define CMD_INITIALIZE_DRIVE_PARAMETERS 0x91
#define CMD_INITIALIZE_DEVICE_PARAMETERS 0x91
#define CMD_NOP 0x00
#define CMD_PACKET 0xA0
#define CMD_READ_BUFFER 0xE4
#define CMD_READ_DMA 0xC8
#define CMD_READ_DMA_EXT 0x25
#define CMD_READ_DMA_QUEUED 0xC7
#define CMD_READ_DMA_QUEUED_EXT 0x26
#define CMD_READ_MULTIPLE 0xC4
#define CMD_READ_MULTIPLE_EXT 0x29
#define CMD_READ_SECTORS 0x20
#define CMD_READ_SECTORS_EXT 0x24
#define CMD_READ_VERIFY_SECTORS 0x40
#define CMD_READ_VERIFY_SECTORS_EXT 0x42
#define CMD_RECALIBRATE 0x10
#define CMD_SEEK 0x70
#define CMD_SET_FEATURES 0xEF
#define CMD_SET_MULTIPLE_MODE 0xC6
#define CMD_SLEEP1 0xE6
#define CMD_SLEEP2 0x99
#define CMD_SMART 0xB0
#define CMD_STANDBY1 0xE2
#define CMD_STANDBY2 0x96
#define CMD_STANDBY_IMMEDIATE1 0xE0
#define CMD_STANDBY_IMMEDIATE2 0x94
#define CMD_WRITE_BUFFER 0xE8
#define CMD_WRITE_DMA 0xCA
#define CMD_WRITE_DMA_EXT 0x35
#define CMD_WRITE_DMA_QUEUED 0xCC
#define CMD_WRITE_DMA_QUEUED_EXT 0x36
#define CMD_WRITE_MULTIPLE 0xC5
#define CMD_WRITE_MULTIPLE_EXT 0x39
#define CMD_WRITE_SECTORS 0x30
#define CMD_WRITE_SECTORS_EXT 0x34
#define CMD_WRITE_VERIFY 0x3C
//**************************************************************
//
// ATA and ATAPI PIO support functions
//
//**************************************************************
// config and reset funcitons
extern void pio_set_iobase_addr( unsigned int base1,
unsigned int base2,
unsigned int base3 );
extern int reg_config( void );
extern int reg_reset( unsigned char devRtrn );
// ATA Non-Data command funnctions (for LBA28 and LBA48)
extern int reg_non_data_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba );
extern int reg_non_data_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo );
// ATA PIO Data In command functions (for LBA28 and LBA48)
extern int reg_pio_data_in_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba,
unsigned char * bufAddr,
long numSect, int multiCnt );
extern int reg_pio_data_in_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo,
unsigned char * bufAddr,
long numSect, int multiCnt );
// ATA PIO Data Out command functions (for LBA28 and LBA48)
extern int reg_pio_data_out_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba,
unsigned char * bufAddr,
long numSect, int multiCnt );
extern int reg_pio_data_out_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo,
unsigned char * bufAddr,
long numSect, int multiCnt );
#if INCLUDE_ATAPI_PIO
// ATAPI Packet PIO function
extern int reg_packet( unsigned char dev,
unsigned int cpbc,
unsigned char * cdbBufAddr,
int dir,
long dpbc,
unsigned char * dataBufAddr );
#endif // INCLUDE_ATAPI_PIO
//**************************************************************
//
// ATA and ATAPI DMA support functions
//
//**************************************************************
#if INCLUDE_ATA_DMA || INCLUDE_ATAPI_DMA
// BMIDE registers and bits
#define BM_COMMAND_REG 0 // offset to BM command reg
#define BM_CR_MASK_READ 0x00 // read from memory
#define BM_CR_MASK_WRITE 0x08 // write to memory
#define BM_CR_MASK_START 0x01 // start transfer
#define BM_CR_MASK_STOP 0x00 // stop transfer
#define BM_STATUS_REG 2 // offset to BM status reg
#define BM_SR_MASK_SIMPLEX 0x80 // simplex only
#define BM_SR_MASK_DRV1 0x40 // drive 1 can do dma
#define BM_SR_MASK_DRV0 0x20 // drive 0 can do dma
#define BM_SR_MASK_INT 0x04 // INTRQ signal asserted
#define BM_SR_MASK_ERR 0x02 // error
#define BM_SR_MASK_ACT 0x01 // active
#define BM_PRD_ADDR_LOW 4 // offset to BM prd addr reg low 16 bits
#define BM_PRD_ADDR_HIGH 6 // offset to BM prd addr reg high 16 bits
// PCI DMA setup function (usually called once).
// !!! You may not need this function in your system - see the comments
// !!! for this function in MINDRVR.C.
extern int dma_pci_config( void );
// ATA DMA functions
extern int dma_pci_lba28( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lba,
unsigned char * bufAddr,
long numSect );
extern int dma_pci_lba48( unsigned char dev, unsigned char cmd,
unsigned int fr, unsigned int sc,
unsigned long lbahi, unsigned long lbalo,
unsigned char * bufAddr,
long numSect );
#endif // INCLUDE_ATA_DMA or INCLUDE_ATAPI_DMA
#if INCLUDE_ATAPI_DMA
// ATA DMA function
extern int dma_pci_packet( unsigned char dev,
unsigned int cpbc,
unsigned char * cdbBufAddr,
int dir,
long dpbc,
unsigned char * dataBufAddr );
#endif // INCLUDE_ATAPI_DMA
// end mindrvr.h

Archive Download the corresponding diff file

Revision: 51