Chameleon

Chameleon Svn Source Tree

Root/branches/azimutz/trunkGraphicsEnablerModules/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
24 */
25static uint64_t measure_tsc_frequency(void)
26{
27 uint64_t tscStart;
28 uint64_t tscEnd;
29 uint64_t tscDelta = 0xffffffffffffffffULL;
30 unsigned long pollCount;
31 uint64_t retval = 0;
32 int i;
33
34 /* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
35 * counter 2. We run this loop 3 times to make sure the cache
36 * is hot and we take the minimum delta from all of the runs.
37 * That is to say that we're biased towards measuring the minimum
38 * number of TSC ticks that occur while waiting for the timer to
39 * expire. That theoretically helps avoid inconsistencies when
40 * running under a VM if the TSC is not virtualized and the host
41 * steals time. The TSC is normally virtualized for VMware.
42 */
43 for(i = 0; i < 10; ++i)
44 {
45 enable_PIT2();
46 set_PIT2_mode0(CALIBRATE_LATCH);
47 tscStart = rdtsc64();
48 pollCount = poll_PIT2_gate();
49 tscEnd = rdtsc64();
50 /* The poll loop must have run at least a few times for accuracy */
51 if(pollCount <= 1)
52 continue;
53 /* The TSC must increment at LEAST once every millisecond. We
54 * should have waited exactly 30 msec so the TSC delta should
55 * be >= 30. Anything less and the processor is way too slow.
56 */
57 if((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
58 continue;
59 // tscDelta = MIN(tscDelta, (tscEnd - tscStart))
60 if( (tscEnd - tscStart) < tscDelta )
61 tscDelta = tscEnd - tscStart;
62 }
63 /* tscDelta is now the least number of TSC ticks the processor made in
64 * a timespan of 0.03 s (e.g. 30 milliseconds)
65 * Linux thus divides by 30 which gives the answer in kiloHertz because
66 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
67 * Hz so we need to convert our milliseconds to seconds. Since we're
68 * dividing by the milliseconds, we simply multiply by 1000.
69 */
70
71 /* Unlike linux, we're not limited to 32-bit, but we do need to take care
72 * that we're going to multiply by 1000 first so we do need at least some
73 * arithmetic headroom. For now, 32-bit should be enough.
74 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
75 */
76 if(tscDelta > (1ULL<<32))
77 retval = 0;
78 else
79 {
80 retval = tscDelta * 1000 / 30;
81 }
82 disable_PIT2();
83 return retval;
84}
85
86#if 0
87/*
88 * DFE: Measures the Max Performance Frequency in Hz (64-bit)
89 */
90static uint64_t measure_mperf_frequency(void)
91{
92 uint64_t mperfStart;
93 uint64_t mperfEnd;
94 uint64_t mperfDelta = 0xffffffffffffffffULL;
95 unsigned long pollCount;
96 uint64_t retval = 0;
97 int i;
98
99 /* Time how many MPERF ticks elapse in 30 msec using the 8254 PIT
100 * counter 2. We run this loop 3 times to make sure the cache
101 * is hot and we take the minimum delta from all of the runs.
102 * That is to say that we're biased towards measuring the minimum
103 * number of MPERF ticks that occur while waiting for the timer to
104 * expire.
105 */
106 for(i = 0; i < 10; ++i)
107 {
108 enable_PIT2();
109 set_PIT2_mode0(CALIBRATE_LATCH);
110 mperfStart = rdmsr64(MSR_AMD_MPERF);
111 pollCount = poll_PIT2_gate();
112 mperfEnd = rdmsr64(MSR_AMD_MPERF);
113 /* The poll loop must have run at least a few times for accuracy */
114 if(pollCount <= 1)
115 continue;
116 /* The MPERF must increment at LEAST once every millisecond. We
117 * should have waited exactly 30 msec so the MPERF delta should
118 * be >= 30. Anything less and the processor is way too slow.
119 */
120 if((mperfEnd - mperfStart) <= CALIBRATE_TIME_MSEC)
121 continue;
122 // tscDelta = MIN(tscDelta, (tscEnd - tscStart))
123 if( (mperfEnd - mperfStart) < mperfDelta )
124 mperfDelta = mperfEnd - mperfStart;
125 }
126 /* mperfDelta is now the least number of MPERF ticks the processor made in
127 * a timespan of 0.03 s (e.g. 30 milliseconds)
128 */
129
130 if(mperfDelta > (1ULL<<32))
131 retval = 0;
132 else
133 {
134 retval = mperfDelta * 1000 / 30;
135 }
136 disable_PIT2();
137 return retval;
138}
139#endif
140/*
141 * Measures the Actual Performance Frequency in Hz (64-bit)
142 */
143static uint64_t measure_aperf_frequency(void)
144{
145 uint64_t aperfStart;
146 uint64_t aperfEnd;
147 uint64_t aperfDelta = 0xffffffffffffffffULL;
148 unsigned long pollCount;
149 uint64_t retval = 0;
150 int i;
151
152 /* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
153 * counter 2. We run this loop 3 times to make sure the cache
154 * is hot and we take the minimum delta from all of the runs.
155 * That is to say that we're biased towards measuring the minimum
156 * number of APERF ticks that occur while waiting for the timer to
157 * expire.
158 */
159 for(i = 0; i < 10; ++i)
160 {
161 enable_PIT2();
162 set_PIT2_mode0(CALIBRATE_LATCH);
163 aperfStart = rdmsr64(MSR_AMD_APERF);
164 pollCount = poll_PIT2_gate();
165 aperfEnd = rdmsr64(MSR_AMD_APERF);
166 /* The poll loop must have run at least a few times for accuracy */
167 if(pollCount <= 1)
168 continue;
169 /* The TSC must increment at LEAST once every millisecond. We
170 * should have waited exactly 30 msec so the APERF delta should
171 * be >= 30. Anything less and the processor is way too slow.
172 */
173 if((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC)
174 continue;
175 // tscDelta = MIN(tscDelta, (tscEnd - tscStart))
176 if( (aperfEnd - aperfStart) < aperfDelta )
177 aperfDelta = aperfEnd - aperfStart;
178 }
179 /* mperfDelta is now the least number of MPERF ticks the processor made in
180 * a timespan of 0.03 s (e.g. 30 milliseconds)
181 */
182
183 if(aperfDelta > (1ULL<<32))
184 retval = 0;
185 else
186 {
187 retval = aperfDelta * 1000 / 30;
188 }
189 disable_PIT2();
190 return retval;
191}
192
193
194/*
195 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
196 * - multi. is read from a specific MSR. In the case of Intel, there is:
197 * a max multi. (used to calculate the FSB freq.),
198 * and a current multi. (used to calculate the CPU freq.)
199 * - fsbFrequency = tscFrequency / multi
200 * - cpuFrequency = fsbFrequency * multi
201 */
202
203void scan_cpu(PlatformInfo_t *p)
204{
205uint64_ttscFrequency, fsbFrequency, cpuFrequency;
206uint64_tmsr, flex_ratio;
207uint8_tmaxcoef, maxdiv, currcoef, bus_ratio_max, currdiv;
208const char *newratio;
209int len, myfsb;
210uint8_t bus_ratio_min;
211uint32_t max_ratio, min_ratio;
212
213max_ratio = min_ratio = myfsb = bus_ratio_min = 0;
214maxcoef = maxdiv = bus_ratio_max = currcoef = currdiv = 0;
215
216/* get cpuid values */
217do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
218do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
219do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
220do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
221 do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
222do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
223 if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8) {
224 do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
225 do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
226}
227 else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1) {
228do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
229}
230
231
232#if DEBUG_CPU
233{
234inti;
235printf("CPUID Raw Values:\n");
236for (i=0; i<CPUID_MAX; i++) {
237printf("%02d: %08x-%08x-%08x-%08x\n", i,
238 p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
239 p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
240}
241}
242#endif
243p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
244p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
245p->CPU.Stepping= bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);
246p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
247p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
248p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
249p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
250
251 p->CPU.Model += (p->CPU.ExtModel << 4);
252
253 if (p->CPU.Vendor == CPUID_VENDOR_INTEL &&
254 p->CPU.Family == 0x06 &&
255 p->CPU.Model >= CPUID_MODEL_NEHALEM &&
256 p->CPU.Model != CPUID_MODEL_ATOM // MSR is *NOT* available on the Intel Atom CPU
257 )
258 {
259 msr = rdmsr64(MSR_CORE_THREAD_COUNT);// Undocumented MSR in Nehalem and newer CPUs
260 p->CPU.NoCores= bitfield((uint32_t)msr, 31, 16);// Using undocumented MSR to get actual values
261 p->CPU.NoThreads= bitfield((uint32_t)msr, 15, 0);// Using undocumented MSR to get actual values
262}
263 else if (p->CPU.Vendor == CPUID_VENDOR_AMD)
264 {
265 p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
266 p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
267 }
268 else
269 {
270 p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);// Use previous method for Cores and Threads
271 p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
272}
273
274/* get brand string (if supported) */
275/* Copyright: from Apple's XNU cpuid.c */
276if (p->CPU.CPUID[CPUID_80][0] > 0x80000004) {
277uint32_treg[4];
278 char str[128], *s;
279/*
280 * The brand string 48 bytes (max), guaranteed to
281 * be NULL terminated.
282 */
283do_cpuid(0x80000002, reg);
284bcopy((char *)reg, &str[0], 16);
285do_cpuid(0x80000003, reg);
286bcopy((char *)reg, &str[16], 16);
287do_cpuid(0x80000004, reg);
288bcopy((char *)reg, &str[32], 16);
289for (s = str; *s != '\0'; s++) {
290if (*s != ' ') break;
291}
292
293strlcpy(p->CPU.BrandString,s, sizeof(p->CPU.BrandString));
294
295if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1))) {
296 /*
297 * This string means we have a firmware-programmable brand string,
298 * and the firmware couldn't figure out what sort of CPU we have.
299 */
300 p->CPU.BrandString[0] = '\0';
301 }
302}
303
304/* setup features */
305if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0) {
306p->CPU.Features |= CPU_FEATURE_MMX;
307}
308if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0) {
309p->CPU.Features |= CPU_FEATURE_SSE;
310}
311if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0) {
312p->CPU.Features |= CPU_FEATURE_SSE2;
313}
314if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0) {
315p->CPU.Features |= CPU_FEATURE_SSE3;
316}
317if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0) {
318p->CPU.Features |= CPU_FEATURE_SSE41;
319}
320if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0) {
321p->CPU.Features |= CPU_FEATURE_SSE42;
322}
323if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0) {
324p->CPU.Features |= CPU_FEATURE_EM64T;
325}
326if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0) {
327p->CPU.Features |= CPU_FEATURE_MSR;
328}
329//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
330if (p->CPU.NoThreads > p->CPU.NoCores) {
331p->CPU.Features |= CPU_FEATURE_HTT;
332}
333
334tscFrequency = measure_tsc_frequency();
335fsbFrequency = 0;
336cpuFrequency = 0;
337
338if ((p->CPU.Vendor == CPUID_VENDOR_INTEL) && ((p->CPU.Family == 0x06) || (p->CPU.Family == 0x0f))) {
339int intelCPU = p->CPU.Model;
340if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03)) {
341/* Nehalem CPU model */
342if (p->CPU.Family == 0x06 && (p->CPU.Model == CPU_MODEL_NEHALEM ||
343 p->CPU.Model == CPU_MODEL_FIELDS ||
344 p->CPU.Model == CPU_MODEL_DALES ||
345 p->CPU.Model == CPU_MODEL_DALES_32NM ||
346 p->CPU.Model == CPU_MODEL_WESTMERE ||
347 p->CPU.Model == CPU_MODEL_NEHALEM_EX ||
348 p->CPU.Model == CPU_MODEL_WESTMERE_EX ||
349 p->CPU.Model == CPU_MODEL_SANDY ||
350 p->CPU.Model == CPU_MODEL_SANDY_XEON)) {
351msr = rdmsr64(MSR_PLATFORM_INFO);
352 DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
353 bus_ratio_max = bitfield(msr, 14, 8);
354 bus_ratio_min = bitfield(msr, 46, 40); //valv: not sure about this one (Remarq.1)
355msr = rdmsr64(MSR_FLEX_RATIO);
356 DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
357 if (bitfield(msr, 16, 16)) {
358 flex_ratio = bitfield(msr, 14, 8);
359/* bcc9: at least on the gigabyte h67ma-ud2h,
360 where the cpu multipler can't be changed to
361 allow overclocking, the flex_ratio msr has unexpected (to OSX)
362 contents. These contents cause mach_kernel to
363 fail to compute the bus ratio correctly, instead
364 causing the system to crash since tscGranularity
365 is inadvertently set to 0.
366 */
367if (flex_ratio == 0) {
368/* Clear bit 16 (evidently the
369 presence bit) */
370wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
371msr = rdmsr64(MSR_FLEX_RATIO);
372 verbose("Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
373} else {
374if (bus_ratio_max > flex_ratio) {
375bus_ratio_max = flex_ratio;
376}
377}
378}
379
380if (bus_ratio_max) {
381fsbFrequency = (tscFrequency / bus_ratio_max);
382}
383//valv: Turbo Ratio Limit
384if ((intelCPU != 0x2e) && (intelCPU != 0x2f)) {
385msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
386cpuFrequency = bus_ratio_max * fsbFrequency;
387max_ratio = bus_ratio_max * 10;
388} else {
389cpuFrequency = tscFrequency;
390}
391if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4)) {
392max_ratio = atoi(newratio);
393max_ratio = (max_ratio * 10);
394if (len >= 3) max_ratio = (max_ratio + 5);
395
396verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
397
398// extreme overclockers may love 320 ;)
399if ((max_ratio >= min_ratio) && (max_ratio <= 320)) {
400cpuFrequency = (fsbFrequency * max_ratio) / 10;
401if (len >= 3) maxdiv = 1;
402else maxdiv = 0;
403} else {
404max_ratio = (bus_ratio_max * 10);
405}
406}
407//valv: to be uncommented if Remarq.1 didn't stick
408/*if(bus_ratio_max > 0) bus_ratio = flex_ratio;*/
409p->CPU.MaxRatio = max_ratio;
410p->CPU.MinRatio = min_ratio;
411
412myfsb = fsbFrequency / 1000000;
413verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio);
414currcoef = bus_ratio_max;
415} else {
416msr = rdmsr64(MSR_IA32_PERF_STATUS);
417 DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
418 currcoef = bitfield(msr, 12, 8);
419/* Non-integer bus ratio for the max-multi*/
420 maxdiv = bitfield(msr, 46, 46);
421/* Non-integer bus ratio for the current-multi (undocumented)*/
422 currdiv = bitfield(msr, 14, 14);
423
424if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f)) // This will always be model >= 3
425{
426/* On these models, maxcoef defines TSC freq */
427 maxcoef = bitfield(msr, 44, 40);
428} else {
429/* On lower models, currcoef defines TSC freq */
430/* XXX */
431maxcoef = currcoef;
432}
433
434if (maxcoef) {
435if (maxdiv) {
436fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
437} else {
438fsbFrequency = (tscFrequency / maxcoef);
439}
440if (currdiv) {
441cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
442} else {
443cpuFrequency = (fsbFrequency * currcoef);
444}
445DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
446}
447}
448}
449/* Mobile CPU */
450if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28)) {
451p->CPU.Features |= CPU_FEATURE_MOBILE;
452}
453}
454else if((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f))
455 {
456 switch(p->CPU.ExtFamily)
457 {
458 case 0x00: /* K8 */
459 msr = rdmsr64(K8_FIDVID_STATUS);
460 maxcoef = bitfield(msr, 21, 16) / 2 + 4;
461 currcoef = bitfield(msr, 5, 0) / 2 + 4;
462 break;
463
464 case 0x01: /* K10 */
465 msr = rdmsr64(K10_COFVID_STATUS);
466 do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
467 if(bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1) // EffFreq: effective frequency interface
468 {
469 //uint64_t mperf = measure_mperf_frequency();
470 uint64_t aperf = measure_aperf_frequency();
471 cpuFrequency = aperf;
472 }
473 // NOTE: tsc runs at the maccoeff (non turbo)
474 // *not* at the turbo frequency.
475 maxcoef = bitfield(msr, 54, 49) / 2 + 4;
476 currcoef = bitfield(msr, 5, 0) + 0x10;
477 currdiv = 2 << bitfield(msr, 8, 6);
478
479 break;
480
481 case 0x05: /* K14 */
482 msr = rdmsr64(K10_COFVID_STATUS);
483 currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
484 currdiv = (bitfield(msr, 8, 4) + 1) << 2;
485 currdiv += bitfield(msr, 3, 0);
486
487 break;
488
489 case 0x02: /* K11 */
490 // not implimented
491 break;
492 }
493
494 if (maxcoef)
495 {
496 if (currdiv)
497 {
498 if(!currcoef) currcoef = maxcoef;
499 if(!cpuFrequency)
500 fsbFrequency = ((tscFrequency * currdiv) / currcoef);
501 else
502 fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
503
504 DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
505 } else {
506 if(!cpuFrequency)
507 fsbFrequency = (tscFrequency / maxcoef);
508 else
509 fsbFrequency = (cpuFrequency / maxcoef);
510 DBG("%d\n", currcoef);
511 }
512 }
513 else if (currcoef)
514 {
515 if (currdiv)
516 {
517 fsbFrequency = ((tscFrequency * currdiv) / currcoef);
518 DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
519 } else {
520 fsbFrequency = (tscFrequency / currcoef);
521 DBG("%d\n", currcoef);
522 }
523 }
524 if(!cpuFrequency) cpuFrequency = tscFrequency;
525 }
526#if 0
527 if (!fsbFrequency) {
528 fsbFrequency = (DEFAULT_FSB * 1000);
529 cpuFrequency = tscFrequency;
530 DBG("0 ! using the default value for FSB !\n");
531 }
532#endif
533
534 p->CPU.MaxCoef = maxcoef;
535 p->CPU.MaxDiv = maxdiv;
536 p->CPU.CurrCoef = currcoef;
537 p->CPU.CurrDiv = currdiv;
538 p->CPU.TSCFrequency = tscFrequency;
539 p->CPU.FSBFrequency = fsbFrequency;
540 p->CPU.CPUFrequency = cpuFrequency;
541
542 DBG("CPU: Brand String: %s\n",p->CPU.BrandString);
543 DBG("CPU: Vendor/Family/ExtFamily: 0x%x/0x%x/0x%x\n",p->CPU.Vendor, p->CPU.Family, p->CPU.ExtFamily);
544 DBG("CPU: Model/ExtModel/Stepping: 0x%x/0x%x/0x%x\n",p->CPU.Model, p->CPU.ExtModel, p->CPU.Stepping);
545 DBG("CPU: MaxCoef/CurrCoef: 0x%x/0x%x\n",p->CPU.MaxCoef, p->CPU.CurrCoef);
546 DBG("CPU: MaxDiv/CurrDiv: 0x%x/0x%x\n",p->CPU.MaxDiv, p->CPU.CurrDiv);
547 DBG("CPU: TSCFreq: %dMHz\n",p->CPU.TSCFrequency / 1000000);
548 DBG("CPU: FSBFreq: %dMHz\n",p->CPU.FSBFrequency / 1000000);
549 DBG("CPU: CPUFreq: %dMHz\n",p->CPU.CPUFrequency / 1000000);
550 DBG("CPU: NoCores/NoThreads: %d/%d\n",p->CPU.NoCores, p->CPU.NoThreads);
551 DBG("CPU: Features: 0x%08x\n",p->CPU.Features);
552#if DEBUG_CPU
553 pause();
554#endif
555}
556

Archive Download this file

Revision: 1212