Chameleon

Chameleon Svn Source Tree

Root/branches/ErmaC/Trunk/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * timeRDTSC()
24 * This routine sets up PIT counter 2 to count down 1/20 of a second.
25 * It pauses until the value is latched in the counter
26 * and then reads the time stamp counter to return to the caller.
27 */
28uint64_t timeRDTSC(void)
29{
30intattempts = 0;
31uint64_t latchTime;
32uint64_tsaveTime,intermediate;
33unsigned int timerValue, lastValue;
34//boolean_tint_enabled;
35/*
36 * Table of correction factors to account for
37 * - timer counter quantization errors, and
38 * - undercounts 0..5
39 */
40#define SAMPLE_CLKS_EXACT(((double) CLKNUM) / 20.0)
41#define SAMPLE_CLKS_INT((int) CLKNUM / 20)
42#define SAMPLE_NSECS(2000000000LL)
43#define SAMPLE_MULTIPLIER(((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
44#define ROUND64(x)((uint64_t)((x) + 0.5))
45uint64_tscale[6] = {
46ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
47ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
48ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
49ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
50ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
51ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
52};
53
54 //int_enabled = ml_set_interrupts_enabled(FALSE);
55
56restart:
57if (attempts >= 9) // increase to up to 9 attempts.
58{
59 // This will flash-reboot. TODO: Use tscPanic instead.
60printf("Timestamp counter calibation failed with %d attempts\n", attempts);
61}
62attempts++;
63enable_PIT2();// turn on PIT2
64set_PIT2(0);// reset timer 2 to be zero
65latchTime = rdtsc64();// get the time stamp to time
66latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
67set_PIT2(SAMPLE_CLKS_INT);// set up the timer for (almost) 1/20th a second
68saveTime = rdtsc64();// now time how long a 20th a second is...
69get_PIT2(&lastValue);
70get_PIT2(&lastValue);// read twice, first value may be unreliable
71do {
72intermediate = get_PIT2(&timerValue);
73if (timerValue > lastValue)
74{
75// Timer wrapped
76set_PIT2(0);
77disable_PIT2();
78goto restart;
79}
80lastValue = timerValue;
81} while (timerValue > 5);
82printf("timerValue %d\n",timerValue);
83printf("intermediate 0x%016llx\n",intermediate);
84printf("saveTime 0x%016llx\n",saveTime);
85
86intermediate -= saveTime;// raw count for about 1/20 second
87intermediate *= scale[timerValue];// rescale measured time spent
88intermediate /= SAMPLE_NSECS;// so its exactly 1/20 a second
89intermediate += latchTime;// add on our save fudge
90
91set_PIT2(0);// reset timer 2 to be zero
92disable_PIT2();// turn off PIT 2
93
94//ml_set_interrupts_enabled(int_enabled);
95return intermediate;
96}
97
98/*
99 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
100 */
101static uint64_t measure_tsc_frequency(void)
102{
103uint64_t tscStart;
104uint64_t tscEnd;
105uint64_t tscDelta = 0xffffffffffffffffULL;
106unsigned long pollCount;
107uint64_t retval = 0;
108int i;
109
110/* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
111 * counter 2. We run this loop 3 times to make sure the cache
112 * is hot and we take the minimum delta from all of the runs.
113 * That is to say that we're biased towards measuring the minimum
114 * number of TSC ticks that occur while waiting for the timer to
115 * expire. That theoretically helps avoid inconsistencies when
116 * running under a VM if the TSC is not virtualized and the host
117 * steals time. The TSC is normally virtualized for VMware.
118 */
119for(i = 0; i < 10; ++i)
120{
121enable_PIT2();
122set_PIT2_mode0(CALIBRATE_LATCH);
123tscStart = rdtsc64();
124pollCount = poll_PIT2_gate();
125tscEnd = rdtsc64();
126/* The poll loop must have run at least a few times for accuracy */
127if (pollCount <= 1)
128{
129continue;
130}
131/* The TSC must increment at LEAST once every millisecond.
132 * We should have waited exactly 30 msec so the TSC delta should
133 * be >= 30. Anything less and the processor is way too slow.
134 */
135if ((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
136{
137continue;
138}
139// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
140if ( (tscEnd - tscStart) < tscDelta )
141{
142tscDelta = tscEnd - tscStart;
143}
144}
145/* tscDelta is now the least number of TSC ticks the processor made in
146 * a timespan of 0.03 s (e.g. 30 milliseconds)
147 * Linux thus divides by 30 which gives the answer in kiloHertz because
148 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
149 * Hz so we need to convert our milliseconds to seconds. Since we're
150 * dividing by the milliseconds, we simply multiply by 1000.
151 */
152
153/* Unlike linux, we're not limited to 32-bit, but we do need to take care
154 * that we're going to multiply by 1000 first so we do need at least some
155 * arithmetic headroom. For now, 32-bit should be enough.
156 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
157 */
158if (tscDelta > (1ULL<<32))
159{
160retval = 0;
161}
162else
163{
164retval = tscDelta * 1000 / 30;
165}
166disable_PIT2();
167return retval;
168}
169
170/*
171 * Original comment/code:
172 * "DFE: Measures the Max Performance Frequency in Hz (64-bit)"
173 *
174 * Measures the Actual Performance Frequency in Hz (64-bit)
175 * (just a naming change, mperf --> aperf )
176 */
177static uint64_t measure_aperf_frequency(void)
178{
179uint64_t aperfStart;
180uint64_t aperfEnd;
181uint64_t aperfDelta = 0xffffffffffffffffULL;
182unsigned long pollCount;
183uint64_t retval = 0;
184int i;
185
186/* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
187 * counter 2. We run this loop 3 times to make sure the cache
188 * is hot and we take the minimum delta from all of the runs.
189 * That is to say that we're biased towards measuring the minimum
190 * number of APERF ticks that occur while waiting for the timer to
191 * expire.
192 */
193for(i = 0; i < 10; ++i)
194{
195enable_PIT2();
196set_PIT2_mode0(CALIBRATE_LATCH);
197aperfStart = rdmsr64(MSR_AMD_APERF);
198pollCount = poll_PIT2_gate();
199aperfEnd = rdmsr64(MSR_AMD_APERF);
200/* The poll loop must have run at least a few times for accuracy */
201if (pollCount <= 1)
202{
203continue;
204}
205/* The TSC must increment at LEAST once every millisecond.
206 * We should have waited exactly 30 msec so the APERF delta should
207 * be >= 30. Anything less and the processor is way too slow.
208 */
209if ((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC)
210{
211continue;
212}
213// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
214if ( (aperfEnd - aperfStart) < aperfDelta )
215{
216aperfDelta = aperfEnd - aperfStart;
217}
218}
219/* mperfDelta is now the least number of MPERF ticks the processor made in
220 * a timespan of 0.03 s (e.g. 30 milliseconds)
221 */
222
223if (aperfDelta > (1ULL<<32))
224{
225retval = 0;
226}
227else
228{
229retval = aperfDelta * 1000 / 30;
230}
231disable_PIT2();
232return retval;
233}
234
235/*
236 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
237 * - multi. is read from a specific MSR. In the case of Intel, there is:
238 * a max multi. (used to calculate the FSB freq.),
239 * and a current multi. (used to calculate the CPU freq.)
240 * - fsbFrequency = tscFrequency / multi
241 * - cpuFrequency = fsbFrequency * multi
242 */
243void scan_cpu(PlatformInfo_t *p)
244{
245uint64_ttscFrequency, fsbFrequency, cpuFrequency;
246uint64_tmsr, flex_ratio;
247uint8_tmaxcoef, maxdiv, currcoef, bus_ratio_max, currdiv;
248const char*newratio;
249intlen, myfsb;
250uint8_tbus_ratio_min;
251uint32_tmax_ratio, min_ratio;
252
253max_ratio = min_ratio = myfsb = bus_ratio_min = 0;
254maxcoef = maxdiv = bus_ratio_max = currcoef = currdiv = 0;
255
256/* get cpuid values */
257do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
258do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
259do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
260do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
261do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
262do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
263if (p->CPU.CPUID[CPUID_0][0] >= 0x5)
264{
265do_cpuid(5, p->CPU.CPUID[CPUID_5]);
266}
267if (p->CPU.CPUID[CPUID_0][0] >= 6)
268{
269do_cpuid(6, p->CPU.CPUID[CPUID_6]);
270}
271if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8)
272{
273do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
274do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
275}
276else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1)
277{
278do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
279}
280
281#if DEBUG_CPU
282{
283inti;
284printf("CPUID Raw Values:\n");
285for (i=0; i<CPUID_MAX; i++)
286{
287printf("%02d: %08x-%08x-%08x-%08x\n", i,
288 p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
289 p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
290}
291}
292#endif
293
294p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
295p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
296p->CPU.Stepping= bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);
297p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
298p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
299p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
300p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
301
302p->CPU.Model += (p->CPU.ExtModel << 4);
303
304if (p->CPU.Vendor == CPUID_VENDOR_INTEL &&
305p->CPU.Family == 0x06 &&
306p->CPU.Model >= CPUID_MODEL_NEHALEM &&
307p->CPU.Model != CPUID_MODEL_ATOM// MSR is *NOT* available on the Intel Atom CPU
308)
309{
310msr = rdmsr64(MSR_CORE_THREAD_COUNT);// Undocumented MSR in Nehalem and newer CPUs
311p->CPU.NoCores= bitfield((uint32_t)msr, 31, 16);// Using undocumented MSR to get actual values
312p->CPU.NoThreads= bitfield((uint32_t)msr, 15, 0);// Using undocumented MSR to get actual values
313}
314else if (p->CPU.Vendor == CPUID_VENDOR_AMD)
315{
316p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
317p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
318}
319else
320{
321// Use previous method for Cores and Threads
322p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
323p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
324}
325
326/* get brand string (if supported) */
327/* Copyright: from Apple's XNU cpuid.c */
328if (p->CPU.CPUID[CPUID_80][0] > 0x80000004)
329{
330uint32_treg[4];
331charstr[128], *s;
332/*
333 * The brand string 48 bytes (max), guaranteed to
334 * be NULL terminated.
335 */
336do_cpuid(0x80000002, reg);
337bcopy((char *)reg, &str[0], 16);
338do_cpuid(0x80000003, reg);
339bcopy((char *)reg, &str[16], 16);
340do_cpuid(0x80000004, reg);
341bcopy((char *)reg, &str[32], 16);
342for (s = str; *s != '\0'; s++)
343{
344if (*s != ' ')
345{
346break;
347}
348}
349
350strlcpy(p->CPU.BrandString, s, sizeof(p->CPU.BrandString));
351
352if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1)))
353{
354/*
355 * This string means we have a firmware-programmable brand string,
356 * and the firmware couldn't figure out what sort of CPU we have.
357 */
358p->CPU.BrandString[0] = '\0';
359}
360}
361
362/* setup features */
363if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0)
364{
365p->CPU.Features |= CPU_FEATURE_MMX;
366}
367if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0)
368{
369p->CPU.Features |= CPU_FEATURE_SSE;
370}
371if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0)
372{
373p->CPU.Features |= CPU_FEATURE_SSE2;
374}
375if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0)
376{
377p->CPU.Features |= CPU_FEATURE_SSE3;
378}
379if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0)
380{
381p->CPU.Features |= CPU_FEATURE_SSE41;
382}
383if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0)
384{
385p->CPU.Features |= CPU_FEATURE_SSE42;
386}
387if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0)
388{
389p->CPU.Features |= CPU_FEATURE_EM64T;
390}
391if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0)
392{
393p->CPU.Features |= CPU_FEATURE_MSR;
394}
395//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
396if (p->CPU.NoThreads > p->CPU.NoCores)
397{
398p->CPU.Features |= CPU_FEATURE_HTT;
399}
400
401tscFrequency = measure_tsc_frequency();
402DBG("cpu freq classic = 0x%016llx\n", tscFrequency);
403/* if usual method failed */
404if ( tscFrequency < 1000 )//TEST
405{
406tscFrequency = timeRDTSC() * 20;//measure_tsc_frequency();
407// DBG("cpu freq timeRDTSC = 0x%016llx\n", tscFrequency);
408}
409else
410{
411// DBG("cpu freq timeRDTSC = 0x%016llxn", timeRDTSC() * 20);
412}
413fsbFrequency = 0;
414cpuFrequency = 0;
415
416if ((p->CPU.Vendor == CPUID_VENDOR_INTEL) && ((p->CPU.Family == 0x06) || (p->CPU.Family == 0x0f)))
417{
418int intelCPU = p->CPU.Model;
419if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03))
420{
421/* Nehalem CPU model */
422if (p->CPU.Family == 0x06 && (p->CPU.Model == CPU_MODEL_NEHALEM||
423 p->CPU.Model == CPU_MODEL_FIELDS||
424 p->CPU.Model == CPU_MODEL_DALES||
425 p->CPU.Model == CPU_MODEL_DALES_32NM||
426 p->CPU.Model == CPU_MODEL_WESTMERE||
427 p->CPU.Model == CPU_MODEL_NEHALEM_EX||
428 p->CPU.Model == CPU_MODEL_WESTMERE_EX ||
429 p->CPU.Model == CPU_MODEL_SANDYBRIDGE ||
430 p->CPU.Model == CPU_MODEL_JAKETOWN||
431 p->CPU.Model == CPU_MODEL_IVYBRIDGE))
432{
433msr = rdmsr64(MSR_PLATFORM_INFO);
434DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
435bus_ratio_max = bitfield(msr, 14, 8);
436bus_ratio_min = bitfield(msr, 46, 40); //valv: not sure about this one (Remarq.1)
437msr = rdmsr64(MSR_FLEX_RATIO);
438DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
439if (bitfield(msr, 16, 16))
440{
441flex_ratio = bitfield(msr, 14, 8);
442/* bcc9: at least on the gigabyte h67ma-ud2h,
443 where the cpu multipler can't be changed to
444 allow overclocking, the flex_ratio msr has unexpected (to OSX)
445 contents.These contents cause mach_kernel to
446 fail to compute the bus ratio correctly, instead
447 causing the system to crash since tscGranularity
448 is inadvertently set to 0.
449 */
450if (flex_ratio == 0)
451{
452/* Clear bit 16 (evidently the presence bit) */
453wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
454msr = rdmsr64(MSR_FLEX_RATIO);
455verbose("Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
456}
457else
458{
459if (bus_ratio_max > flex_ratio)
460{
461bus_ratio_max = flex_ratio;
462}
463}
464}
465
466if (bus_ratio_max)
467{
468fsbFrequency = (tscFrequency / bus_ratio_max);
469}
470//valv: Turbo Ratio Limit
471if ((intelCPU != 0x2e) && (intelCPU != 0x2f))
472{
473msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
474cpuFrequency = bus_ratio_max * fsbFrequency;
475max_ratio = bus_ratio_max * 10;
476}
477else
478{
479cpuFrequency = tscFrequency;
480}
481if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4))
482{
483max_ratio = atoi(newratio);
484max_ratio = (max_ratio * 10);
485if (len >= 3)
486{
487max_ratio = (max_ratio + 5);
488}
489
490verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
491
492// extreme overclockers may love 320 ;)
493if ((max_ratio >= min_ratio) && (max_ratio <= 320))
494{
495cpuFrequency = (fsbFrequency * max_ratio) / 10;
496if (len >= 3)
497{
498maxdiv = 1;
499}
500else
501{
502maxdiv = 0;
503}
504}
505else
506{
507max_ratio = (bus_ratio_max * 10);
508}
509}
510//valv: to be uncommented if Remarq.1 didn't stick
511/*if (bus_ratio_max > 0) bus_ratio = flex_ratio;*/
512p->CPU.MaxRatio = max_ratio;
513p->CPU.MinRatio = min_ratio;
514
515myfsb = fsbFrequency / 1000000;
516verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio);
517currcoef = bus_ratio_max;
518}
519else
520{
521msr = rdmsr64(MSR_IA32_PERF_STATUS);
522DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
523currcoef = bitfield(msr, 12, 8);
524/* Non-integer bus ratio for the max-multi*/
525maxdiv = bitfield(msr, 46, 46);
526/* Non-integer bus ratio for the current-multi (undocumented)*/
527currdiv = bitfield(msr, 14, 14);
528
529// This will always be model >= 3
530if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f))
531{
532/* On these models, maxcoef defines TSC freq */
533maxcoef = bitfield(msr, 44, 40);
534}
535else
536{
537/* On lower models, currcoef defines TSC freq */
538/* XXX */
539maxcoef = currcoef;
540}
541
542if (maxcoef)
543{
544if (maxdiv)
545{
546fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
547}
548else
549{
550fsbFrequency = (tscFrequency / maxcoef);
551}
552if (currdiv)
553{
554cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
555}
556else
557{
558cpuFrequency = (fsbFrequency * currcoef);
559}
560DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
561}
562}
563}
564/* Mobile CPU */
565if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28))
566{
567p->CPU.Features |= CPU_FEATURE_MOBILE;
568}
569}
570else if ((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f))
571{
572switch(p->CPU.ExtFamily)
573{
574case 0x00: /* K8 */
575msr = rdmsr64(K8_FIDVID_STATUS);
576maxcoef = bitfield(msr, 21, 16) / 2 + 4;
577currcoef = bitfield(msr, 5, 0) / 2 + 4;
578break;
579
580case 0x01: /* K10 */
581msr = rdmsr64(K10_COFVID_STATUS);
582do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
583// EffFreq: effective frequency interface
584if (bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1)
585{
586//uint64_t mperf = measure_mperf_frequency();
587uint64_t aperf = measure_aperf_frequency();
588cpuFrequency = aperf;
589}
590// NOTE: tsc runs at the maccoeff (non turbo)
591//*not* at the turbo frequency.
592maxcoef = bitfield(msr, 54, 49) / 2 + 4;
593currcoef = bitfield(msr, 5, 0) + 0x10;
594currdiv = 2 << bitfield(msr, 8, 6);
595
596break;
597
598case 0x05: /* K14 */
599msr = rdmsr64(K10_COFVID_STATUS);
600currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
601currdiv = (bitfield(msr, 8, 4) + 1) << 2;
602currdiv += bitfield(msr, 3, 0);
603
604break;
605
606case 0x02: /* K11 */
607// not implimented
608break;
609}
610
611if (maxcoef)
612{
613if (currdiv)
614{
615if (!currcoef)
616{
617currcoef = maxcoef;
618}
619
620if (!cpuFrequency)
621{
622fsbFrequency = ((tscFrequency * currdiv) / currcoef);
623}
624else
625{
626fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
627}
628DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
629}
630else
631{
632if (!cpuFrequency)
633{
634fsbFrequency = (tscFrequency / maxcoef);
635}
636else
637{
638fsbFrequency = (cpuFrequency / maxcoef);
639}
640DBG("%d\n", currcoef);
641}
642}
643else if (currcoef)
644{
645if (currdiv)
646{
647fsbFrequency = ((tscFrequency * currdiv) / currcoef);
648DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
649}
650else
651{
652fsbFrequency = (tscFrequency / currcoef);
653DBG("%d\n", currcoef);
654}
655}
656if (!cpuFrequency) cpuFrequency = tscFrequency;
657}
658
659#if 0
660if (!fsbFrequency)
661{
662fsbFrequency = (DEFAULT_FSB * 1000);
663cpuFrequency = tscFrequency;
664DBG("0 ! using the default value for FSB !\n");
665}
666
667DBG("cpu freq = 0x%016llxn", timeRDTSC() * 20);
668
669#endif
670
671p->CPU.MaxCoef = maxcoef;
672p->CPU.MaxDiv = maxdiv;
673p->CPU.CurrCoef = currcoef;
674p->CPU.CurrDiv = currdiv;
675p->CPU.TSCFrequency = tscFrequency;
676p->CPU.FSBFrequency = fsbFrequency;
677p->CPU.CPUFrequency = cpuFrequency;
678
679// keep formatted with spaces instead of tabs
680DBG("\n---------------------------------------------\n");
681DBG("CPU: Brand String:\t\t\t\t %s\n", p->CPU.BrandString);
682DBG("CPU: Vendor/Family/ExtFamily:\t 0x%x/0x%x/0x%x\n", p->CPU.Vendor, p->CPU.Family, p->CPU.ExtFamily);
683DBG("CPU: Model/ExtModel/Stepping:\t 0x%x/0x%x/0x%x\n", p->CPU.Model, p->CPU.ExtModel, p->CPU.Stepping);
684DBG("CPU: MaxCoef/CurrCoef:\t\t\t 0x%x/0x%x\n", p->CPU.MaxCoef, p->CPU.CurrCoef);
685DBG("CPU: MaxDiv/CurrDiv:\t\t\t 0x%x/0x%x\n", p->CPU.MaxDiv, p->CPU.CurrDiv);
686DBG("CPU: TSCFreq:\t\t\t\t %dMHz\n", p->CPU.TSCFrequency / 1000000);
687DBG("CPU: FSBFreq:\t\t\t\t\t %dMHz\n", (p->CPU.FSBFrequency + 500000) / 1000000);
688DBG("CPU: CPUFreq:\t\t\t\t %dMHz\n", p->CPU.CPUFrequency / 1000000);
689DBG("CPU: Number of CPU Cores:\t\t %d\n", p->CPU.NoCores);
690DBG("CPU: Number of CPU Threads:\t %d\n", p->CPU.NoThreads);
691DBG("CPU: Features:\t\t\t\t\t 0x%08x\n", p->CPU.Features);
692DBG("---------------------------------------------\n");
693#if DEBUG_CPU
694pause();
695#endif
696}
697

Archive Download this file

Revision: 2045