Chameleon

Chameleon Svn Source Tree

Root/trunk/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9
10#ifndef DEBUG_CPU
11#define DEBUG_CPU 0
12#endif
13
14#if DEBUG_CPU
15#define DBG(x...)printf(x)
16#else
17#define DBG(x...)
18#endif
19
20/*
21 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
22 */
23static uint64_t measure_tsc_frequency(void)
24{
25 uint64_t tscStart;
26 uint64_t tscEnd;
27 uint64_t tscDelta = 0xffffffffffffffffULL;
28 unsigned long pollCount;
29 uint64_t retval = 0;
30 int i;
31
32 /* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
33 * counter 2. We run this loop 3 times to make sure the cache
34 * is hot and we take the minimum delta from all of the runs.
35 * That is to say that we're biased towards measuring the minimum
36 * number of TSC ticks that occur while waiting for the timer to
37 * expire. That theoretically helps avoid inconsistencies when
38 * running under a VM if the TSC is not virtualized and the host
39 * steals time. The TSC is normally virtualized for VMware.
40 */
41 for(i = 0; i < 10; ++i)
42 {
43 enable_PIT2();
44 set_PIT2_mode0(CALIBRATE_LATCH);
45 tscStart = rdtsc64();
46 pollCount = poll_PIT2_gate();
47 tscEnd = rdtsc64();
48 /* The poll loop must have run at least a few times for accuracy */
49 if(pollCount <= 1)
50 continue;
51 /* The TSC must increment at LEAST once every millisecond. We
52 * should have waited exactly 30 msec so the TSC delta should
53 * be >= 30. Anything less and the processor is way too slow.
54 */
55 if((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
56 continue;
57 // tscDelta = min(tscDelta, (tscEnd - tscStart))
58 if( (tscEnd - tscStart) < tscDelta )
59 tscDelta = tscEnd - tscStart;
60 }
61 /* tscDelta is now the least number of TSC ticks the processor made in
62 * a timespan of 0.03 s (e.g. 30 milliseconds)
63 * Linux thus divides by 30 which gives the answer in kiloHertz because
64 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
65 * Hz so we need to convert our milliseconds to seconds. Since we're
66 * dividing by the milliseconds, we simply multiply by 1000.
67 */
68
69 /* Unlike linux, we're not limited to 32-bit, but we do need to take care
70 * that we're going to multiply by 1000 first so we do need at least some
71 * arithmetic headroom. For now, 32-bit should be enough.
72 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
73 */
74 if(tscDelta > (1ULL<<32))
75 retval = 0;
76 else
77 {
78 retval = tscDelta * 1000 / 30;
79 }
80 disable_PIT2();
81 return retval;
82}
83
84/*
85 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
86 * - multi. is read from a specific MSR. In the case of Intel, there is:
87 * a max multi. (used to calculate the FSB freq.),
88 * and a current multi. (used to calculate the CPU freq.)
89 * - fsbFrequency = tscFrequency / multi
90 * - cpuFrequency = fsbFrequency * multi
91 */
92
93void scan_cpu(PlatformInfo_t *p)
94{
95uint64_ttscFrequency, fsbFrequency, cpuFrequency;
96uint64_tmsr, flex_ratio;
97uint8_tmaxcoef, maxdiv, currcoef, currdiv;
98
99maxcoef = maxdiv = currcoef = currdiv = 0;
100
101/* get cpuid values */
102do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
103do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
104do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
105do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
106do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
107do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
108if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1) {
109do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
110}
111#if DEBUG_CPU
112{
113inti;
114printf("CPUID Raw Values:\n");
115for (i=0; i<CPUID_MAX; i++) {
116printf("%02d: %08x-%08x-%08x-%08x\n", i,
117p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
118p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
119}
120}
121#endif
122p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
123p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
124p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
125p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
126p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
127p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
128p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
129
130p->CPU.Model += (p->CPU.ExtModel << 4);
131
132/* setup features */
133if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0) {
134p->CPU.Features |= CPU_FEATURE_MMX;
135}
136if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0) {
137p->CPU.Features |= CPU_FEATURE_SSE;
138}
139if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0) {
140p->CPU.Features |= CPU_FEATURE_SSE2;
141}
142if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0) {
143p->CPU.Features |= CPU_FEATURE_SSE3;
144}
145if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0) {
146p->CPU.Features |= CPU_FEATURE_SSE41;
147}
148if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0) {
149p->CPU.Features |= CPU_FEATURE_SSE42;
150}
151if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0) {
152p->CPU.Features |= CPU_FEATURE_EM64T;
153}
154if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0) {
155p->CPU.Features |= CPU_FEATURE_MSR;
156}
157//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
158if (p->CPU.NoThreads > p->CPU.NoCores) {
159p->CPU.Features |= CPU_FEATURE_HTT;
160}
161
162tscFrequency = measure_tsc_frequency();
163fsbFrequency = 0;
164cpuFrequency = 0;
165
166if ((p->CPU.Vendor == 0x756E6547 /* Intel */) && ((p->CPU.Family == 0x06) || (p->CPU.Family == 0x0f))) {
167if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03)) {
168/* Nehalem CPU model */
169if (p->CPU.Family == 0x06 && (p->CPU.Model == 0x1a || p->CPU.Model == 0x1e
170 || p->CPU.Model == 0x1f || p->CPU.Model == 0x25 || p->CPU.Model == 0x2c)) {
171msr = rdmsr64(MSR_PLATFORM_INFO);
172DBG("msr(%d): platform_info %08x\n", __LINE__, msr & 0xffffffff);
173currcoef = (msr >> 8) & 0xff;
174msr = rdmsr64(MSR_FLEX_RATIO);
175DBG("msr(%d): flex_ratio %08x\n", __LINE__, msr & 0xffffffff);
176if ((msr >> 16) & 0x01) {
177flex_ratio = (msr >> 8) & 0xff;
178if (currcoef > flex_ratio) {
179currcoef = flex_ratio;
180}
181}
182
183if (currcoef) {
184fsbFrequency = (tscFrequency / currcoef);
185}
186cpuFrequency = tscFrequency;
187} else {
188msr = rdmsr64(MSR_IA32_PERF_STATUS);
189DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, msr & 0xffffffff);
190currcoef = (msr >> 8) & 0x1f;
191/* Non-integer bus ratio for the max-multi*/
192maxdiv = (msr >> 46) & 0x01;
193/* Non-integer bus ratio for the current-multi (undocumented)*/
194currdiv = (msr >> 14) & 0x01;
195
196if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f)) // This will always be model >= 3
197{
198/* On these models, maxcoef defines TSC freq */
199maxcoef = (msr >> 40) & 0x1f;
200} else {
201/* On lower models, currcoef defines TSC freq */
202/* XXX */
203maxcoef = currcoef;
204}
205
206if (maxcoef) {
207if (maxdiv) {
208fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
209} else {
210fsbFrequency = (tscFrequency / maxcoef);
211}
212if (currdiv) {
213cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
214} else {
215cpuFrequency = (fsbFrequency * currcoef);
216}
217DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
218}
219}
220}
221/* Mobile CPU ? */
222if (rdmsr64(0x17) & (1<<28)) {
223p->CPU.Features |= CPU_FEATURE_MOBILE;
224}
225}
226#if 0
227else if((p->CPU.Vendor == 0x68747541 /* AMD */) && (p->CPU.Family == 0x0f)) {
228if(p->CPU.ExtFamily == 0x00 /* K8 */) {
229msr = rdmsr64(K8_FIDVID_STATUS);
230currcoef = (msr & 0x3f) / 2 + 4;
231currdiv = (msr & 0x01) * 2;
232} else if(p->CPU.ExtFamily >= 0x01 /* K10+ */) {
233msr = rdmsr64(K10_COFVID_STATUS);
234if(p->CPU.ExtFamily == 0x01 /* K10 */)
235currcoef = (msr & 0x3f) + 0x10;
236else /* K11+ */
237currcoef = (msr & 0x3f) + 0x08;
238currdiv = (2 << ((msr >> 6) & 0x07));
239}
240
241if (currcoef) {
242if (currdiv) {
243fsbFrequency = ((tscFrequency * currdiv) / currcoef);
244DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
245} else {
246fsbFrequency = (tscFrequency / currcoef);
247DBG("%d\n", currcoef);
248}
249fsbFrequency = (tscFrequency / currcoef);
250cpuFrequency = tscFrequency;
251}
252}
253
254if (!fsbFrequency) {
255fsbFrequency = (DEFAULT_FSB * 1000);
256cpuFrequency = tscFrequency;
257DBG("0 ! using the default value for FSB !\n");
258}
259#endif
260
261p->CPU.MaxCoef = maxcoef;
262p->CPU.MaxDiv = maxdiv;
263p->CPU.CurrCoef = currcoef;
264p->CPU.CurrDiv = currdiv;
265p->CPU.TSCFrequency = tscFrequency;
266p->CPU.FSBFrequency = fsbFrequency;
267p->CPU.CPUFrequency = cpuFrequency;
268#if DEBUG_CPU
269DBG("CPU: Vendor/Model/ExtModel: 0x%x/0x%x/0x%x\n", p->CPU.Vendor, p->CPU.Model, p->CPU.ExtModel);
270DBG("CPU: Family/ExtFamily: 0x%x/0x%x\n", p->CPU.Family, p->CPU.ExtFamily);
271DBG("CPU: MaxCoef/CurrCoef: 0x%x/0x%x\n", p->CPU.MaxCoef, p->CPU.CurrCoef);
272DBG("CPU: MaxDiv/CurrDiv: 0x%x/0x%x\n", p->CPU.MaxDiv, p->CPU.CurrDiv);
273DBG("CPU: TSCFreq: %dMHz\n", p->CPU.TSCFrequency / 1000000);
274DBG("CPU: FSBFreq: %dMHz\n", p->CPU.FSBFrequency / 1000000);
275DBG("CPU: CPUFreq: %dMHz\n", p->CPU.CPUFrequency / 1000000);
276DBG("CPU: NoCores/NoThreads: %d/%d\n", p->CPU.NoCores, p->CPU.NoThreads);
277DBG("CPU: Features: 0x%08x\n", p->CPU.Features);
278pause();
279#endif
280}
281

Archive Download this file

Revision: 205