Chameleon

Chameleon Svn Source Tree

Root/trunk/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * timeRDTSC()
24 * This routine sets up PIT counter 2 to count down 1/20 of a second.
25 * It pauses until the value is latched in the counter
26 * and then reads the time stamp counter to return to the caller.
27 */
28uint64_t timeRDTSC(void)
29{
30intattempts = 0;
31uint64_t latchTime;
32uint64_tsaveTime,intermediate;
33unsigned int timerValue, lastValue;
34//boolean_tint_enabled;
35/*
36 * Table of correction factors to account for
37 * - timer counter quantization errors, and
38 * - undercounts 0..5
39 */
40#define SAMPLE_CLKS_EXACT(((double) CLKNUM) / 20.0)
41#define SAMPLE_CLKS_INT((int) CLKNUM / 20)
42#define SAMPLE_NSECS(2000000000LL)
43#define SAMPLE_MULTIPLIER(((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
44#define ROUND64(x)((uint64_t)((x) + 0.5))
45uint64_tscale[6] = {
46ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
47ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
48ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
49ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
50ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
51ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
52};
53
54//int_enabled = ml_set_interrupts_enabled(FALSE);
55
56restart:
57if (attempts >= 9) // increase to up to 9 attempts.
58{
59 // This will flash-reboot. TODO: Use tscPanic instead.
60printf("Timestamp counter calibation failed with %d attempts\n", attempts);
61}
62attempts++;
63enable_PIT2();// turn on PIT2
64set_PIT2(0);// reset timer 2 to be zero
65latchTime = rdtsc64();// get the time stamp to time
66latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
67set_PIT2(SAMPLE_CLKS_INT);// set up the timer for (almost) 1/20th a second
68saveTime = rdtsc64();// now time how long a 20th a second is...
69get_PIT2(&lastValue);
70get_PIT2(&lastValue);// read twice, first value may be unreliable
71do {
72intermediate = get_PIT2(&timerValue);
73if (timerValue > lastValue)
74{
75// Timer wrapped
76set_PIT2(0);
77disable_PIT2();
78goto restart;
79}
80lastValue = timerValue;
81} while (timerValue > 5);
82printf("timerValue %d\n",timerValue);
83printf("intermediate 0x%016llx\n",intermediate);
84printf("saveTime 0x%016llx\n",saveTime);
85
86intermediate -= saveTime;// raw count for about 1/20 second
87intermediate *= scale[timerValue];// rescale measured time spent
88intermediate /= SAMPLE_NSECS;// so its exactly 1/20 a second
89intermediate += latchTime;// add on our save fudge
90
91set_PIT2(0);// reset timer 2 to be zero
92disable_PIT2();// turn off PIT 2
93
94//ml_set_interrupts_enabled(int_enabled);
95return intermediate;
96}
97
98/*
99 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
100 */
101static uint64_t measure_tsc_frequency(void)
102{
103uint64_t tscStart;
104uint64_t tscEnd;
105uint64_t tscDelta = 0xffffffffffffffffULL;
106unsigned long pollCount;
107uint64_t retval = 0;
108int i;
109
110/* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
111 * counter 2. We run this loop 3 times to make sure the cache
112 * is hot and we take the minimum delta from all of the runs.
113 * That is to say that we're biased towards measuring the minimum
114 * number of TSC ticks that occur while waiting for the timer to
115 * expire. That theoretically helps avoid inconsistencies when
116 * running under a VM if the TSC is not virtualized and the host
117 * steals time. The TSC is normally virtualized for VMware.
118 */
119for(i = 0; i < 10; ++i)
120{
121enable_PIT2();
122set_PIT2_mode0(CALIBRATE_LATCH);
123tscStart = rdtsc64();
124pollCount = poll_PIT2_gate();
125tscEnd = rdtsc64();
126/* The poll loop must have run at least a few times for accuracy */
127if (pollCount <= 1)
128{
129continue;
130}
131/* The TSC must increment at LEAST once every millisecond.
132 * We should have waited exactly 30 msec so the TSC delta should
133 * be >= 30. Anything less and the processor is way too slow.
134 */
135if ((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
136{
137continue;
138}
139// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
140if ( (tscEnd - tscStart) < tscDelta )
141{
142tscDelta = tscEnd - tscStart;
143}
144}
145/* tscDelta is now the least number of TSC ticks the processor made in
146 * a timespan of 0.03 s (e.g. 30 milliseconds)
147 * Linux thus divides by 30 which gives the answer in kiloHertz because
148 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
149 * Hz so we need to convert our milliseconds to seconds. Since we're
150 * dividing by the milliseconds, we simply multiply by 1000.
151 */
152
153/* Unlike linux, we're not limited to 32-bit, but we do need to take care
154 * that we're going to multiply by 1000 first so we do need at least some
155 * arithmetic headroom. For now, 32-bit should be enough.
156 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
157 */
158if (tscDelta > (1ULL<<32))
159{
160retval = 0;
161}
162else
163{
164retval = tscDelta * 1000 / 30;
165}
166disable_PIT2();
167return retval;
168}
169
170/*
171 * Original comment/code:
172 * "DFE: Measures the Max Performance Frequency in Hz (64-bit)"
173 *
174 * Measures the Actual Performance Frequency in Hz (64-bit)
175 * (just a naming change, mperf --> aperf )
176 */
177static uint64_t measure_aperf_frequency(void)
178{
179uint64_t aperfStart;
180uint64_t aperfEnd;
181uint64_t aperfDelta = 0xffffffffffffffffULL;
182unsigned long pollCount;
183uint64_t retval = 0;
184int i;
185
186/* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
187 * counter 2. We run this loop 3 times to make sure the cache
188 * is hot and we take the minimum delta from all of the runs.
189 * That is to say that we're biased towards measuring the minimum
190 * number of APERF ticks that occur while waiting for the timer to
191 * expire.
192 */
193for(i = 0; i < 10; ++i)
194{
195enable_PIT2();
196set_PIT2_mode0(CALIBRATE_LATCH);
197aperfStart = rdmsr64(MSR_AMD_APERF);
198pollCount = poll_PIT2_gate();
199aperfEnd = rdmsr64(MSR_AMD_APERF);
200/* The poll loop must have run at least a few times for accuracy */
201if (pollCount <= 1)
202{
203continue;
204}
205/* The TSC must increment at LEAST once every millisecond.
206 * We should have waited exactly 30 msec so the APERF delta should
207 * be >= 30. Anything less and the processor is way too slow.
208 */
209if ((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC)
210{
211continue;
212}
213// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
214if ( (aperfEnd - aperfStart) < aperfDelta )
215{
216aperfDelta = aperfEnd - aperfStart;
217}
218}
219/* mperfDelta is now the least number of MPERF ticks the processor made in
220 * a timespan of 0.03 s (e.g. 30 milliseconds)
221 */
222
223if (aperfDelta > (1ULL<<32))
224{
225retval = 0;
226}
227else
228{
229retval = aperfDelta * 1000 / 30;
230}
231disable_PIT2();
232return retval;
233}
234
235/*
236 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
237 * - multi. is read from a specific MSR. In the case of Intel, there is:
238 * a max multi. (used to calculate the FSB freq.),
239 * and a current multi. (used to calculate the CPU freq.)
240 * - fsbFrequency = tscFrequency / multi
241 * - cpuFrequency = fsbFrequency * multi
242 */
243void scan_cpu(PlatformInfo_t *p)
244{
245uint64_ttscFrequency, fsbFrequency, cpuFrequency;
246uint64_tmsr, flex_ratio;
247uint8_tmaxcoef, maxdiv, currcoef, bus_ratio_max, currdiv;
248const char*newratio;
249intlen, myfsb;
250uint8_tbus_ratio_min;
251uint32_tmax_ratio, min_ratio;
252
253max_ratio = min_ratio = myfsb = bus_ratio_min = 0;
254maxcoef = maxdiv = bus_ratio_max = currcoef = currdiv = 0;
255
256/* get cpuid values */
257do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
258do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
259do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
260do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
261do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
262do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
263if (p->CPU.CPUID[CPUID_0][0] >= 0x5) {
264do_cpuid(5, p->CPU.CPUID[CPUID_5]);
265}
266if (p->CPU.CPUID[CPUID_0][0] >= 6) {
267do_cpuid(6, p->CPU.CPUID[CPUID_6]);
268}
269if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8) {
270do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
271do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
272} else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1) {
273do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
274}
275
276#if DEBUG_CPU
277{
278inti;
279printf("CPUID Raw Values:\n");
280for (i=0; i<CPUID_MAX; i++) {
281printf("%02d: %08x-%08x-%08x-%08x\n", i,
282 p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
283 p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
284}
285}
286#endif
287
288/*
289 EAX (Intel):
290 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
291 +--------+----------------+--------+----+----+--------+--------+--------+
292 |########|Extended family |Extmodel|####|type|familyid| model |stepping|
293 +--------+----------------+--------+----+----+--------+--------+--------+
294
295 EAX (AMD):
296 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
297 +--------+----------------+--------+----+----+--------+--------+--------+
298 |########|Extended family |Extmodel|####|####|familyid| model |stepping|
299 +--------+----------------+--------+----+----+--------+--------+--------+
300*/
301
302p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
303p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
304// stepping = cpu_feat_eax & 0xF;
305p->CPU.Stepping= bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);
306// model = (cpu_feat_eax >> 4) & 0xF;
307p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
308// family = (cpu_feat_eax >> 8) & 0xF;
309p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
310// type = (cpu_feat_eax >> 12) & 0x3;
311//p->CPU.Type= bitfield(p->CPU.CPUID[CPUID_1][0], 13, 12);
312// ext_model = (cpu_feat_eax >> 16) & 0xF;
313p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
314// ext_family = (cpu_feat_eax >> 20) & 0xFF;
315p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
316
317p->CPU.Model += (p->CPU.ExtModel << 4);
318
319if (p->CPU.Vendor == CPUID_VENDOR_INTEL &&
320p->CPU.Family == 0x06 &&
321p->CPU.Model >= CPU_MODEL_NEHALEM &&
322p->CPU.Model != CPU_MODEL_ATOM// MSR is *NOT* available on the Intel Atom CPU
323) {
324msr = rdmsr64(MSR_CORE_THREAD_COUNT);// Undocumented MSR in Nehalem and newer CPUs
325p->CPU.NoCores= bitfield((uint32_t)msr, 31, 16);// Using undocumented MSR to get actual values
326p->CPU.NoThreads= bitfield((uint32_t)msr, 15, 0);// Using undocumented MSR to get actual values
327} else if (p->CPU.Vendor == CPUID_VENDOR_AMD) {
328p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
329p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
330} else {
331// Use previous method for Cores and Threads
332p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
333p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
334}
335
336/* get brand string (if supported) */
337/* Copyright: from Apple's XNU cpuid.c */
338if (p->CPU.CPUID[CPUID_80][0] > 0x80000004) {
339uint32_treg[4];
340charstr[128], *s;
341/*
342 * The brand string 48 bytes (max), guaranteed to
343 * be NULL terminated.
344 */
345do_cpuid(0x80000002, reg);
346bcopy((char *)reg, &str[0], 16);
347do_cpuid(0x80000003, reg);
348bcopy((char *)reg, &str[16], 16);
349do_cpuid(0x80000004, reg);
350bcopy((char *)reg, &str[32], 16);
351for (s = str; *s != '\0'; s++) {
352if (*s != ' ') {
353break;
354}
355}
356
357strlcpy(p->CPU.BrandString, s, sizeof(p->CPU.BrandString));
358
359if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1))) {
360/*
361 * This string means we have a firmware-programmable brand string,
362 * and the firmware couldn't figure out what sort of CPU we have.
363 */
364p->CPU.BrandString[0] = '\0';
365}
366}
367
368/* setup features */
369if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0) {
370p->CPU.Features |= CPU_FEATURE_MMX;
371}
372if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0) {
373p->CPU.Features |= CPU_FEATURE_SSE;
374}
375if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0) {
376p->CPU.Features |= CPU_FEATURE_SSE2;
377}
378if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0) {
379p->CPU.Features |= CPU_FEATURE_SSE3;
380}
381if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0) {
382p->CPU.Features |= CPU_FEATURE_SSE41;
383}
384if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0) {
385p->CPU.Features |= CPU_FEATURE_SSE42;
386}
387if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0) {
388p->CPU.Features |= CPU_FEATURE_EM64T;
389}
390if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0) {
391p->CPU.Features |= CPU_FEATURE_MSR;
392}
393//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
394if (p->CPU.NoThreads > p->CPU.NoCores) {
395p->CPU.Features |= CPU_FEATURE_HTT;
396}
397
398tscFrequency = measure_tsc_frequency();
399/* if usual method failed */
400if ( tscFrequency < 1000 ) { //TEST
401tscFrequency = timeRDTSC() * 20;
402}
403fsbFrequency = 0;
404cpuFrequency = 0;
405
406if ((p->CPU.Vendor == CPUID_VENDOR_INTEL) && ((p->CPU.Family == 0x06) || (p->CPU.Family == 0x0f))) {
407int intelCPU = p->CPU.Model;
408if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03)){
409/* Nehalem CPU model */
410if (p->CPU.Family == 0x06 && (p->CPU.Model == CPU_MODEL_NEHALEM||
411 p->CPU.Model == CPU_MODEL_FIELDS||
412 p->CPU.Model == CPU_MODEL_DALES||
413 p->CPU.Model == CPU_MODEL_DALES_32NM||
414 p->CPU.Model == CPU_MODEL_WESTMERE||
415 p->CPU.Model == CPU_MODEL_NEHALEM_EX||
416 p->CPU.Model == CPU_MODEL_WESTMERE_EX ||
417 p->CPU.Model == CPU_MODEL_SANDYBRIDGE ||
418 p->CPU.Model == CPU_MODEL_JAKETOWN ||
419 p->CPU.Model == CPU_MODEL_IVYBRIDGE_XEON||
420 p->CPU.Model == CPU_MODEL_IVYBRIDGE ||
421 p->CPU.Model == CPU_MODEL_HASWELL ||
422 p->CPU.Model == CPU_MODEL_HASWELL_MB ||
423 //p->CPU.Model == CPU_MODEL_HASWELL_H ||
424 p->CPU.Model == CPU_MODEL_HASWELL_ULT ||
425 p->CPU.Model == CPU_MODEL_CRYSTALWELL ))
426{
427msr = rdmsr64(MSR_PLATFORM_INFO);
428DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
429bus_ratio_max = bitfield(msr, 15, 8);
430bus_ratio_min = bitfield(msr, 47, 40); //valv: not sure about this one (Remarq.1)
431msr = rdmsr64(MSR_FLEX_RATIO);
432DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
433if (bitfield(msr, 16, 16)) {
434flex_ratio = bitfield(msr, 15, 8);
435/* bcc9: at least on the gigabyte h67ma-ud2h,
436 where the cpu multipler can't be changed to
437 allow overclocking, the flex_ratio msr has unexpected (to OSX)
438 contents.These contents cause mach_kernel to
439 fail to compute the bus ratio correctly, instead
440 causing the system to crash since tscGranularity
441 is inadvertently set to 0.
442 */
443if (flex_ratio == 0) {
444/* Clear bit 16 (evidently the presence bit) */
445wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
446msr = rdmsr64(MSR_FLEX_RATIO);
447verbose("Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
448} else {
449if (bus_ratio_max > flex_ratio) {
450bus_ratio_max = flex_ratio;
451}
452}
453}
454
455if (bus_ratio_max) {
456fsbFrequency = (tscFrequency / bus_ratio_max);
457}
458//valv: Turbo Ratio Limit
459if ((intelCPU != 0x2e) && (intelCPU != 0x2f)) {
460msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
461cpuFrequency = bus_ratio_max * fsbFrequency;
462max_ratio = bus_ratio_max * 10;
463} else {
464cpuFrequency = tscFrequency;
465}
466if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4)) {
467max_ratio = atoi(newratio);
468max_ratio = (max_ratio * 10);
469if (len >= 3) {
470max_ratio = (max_ratio + 5);
471}
472
473verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
474
475// extreme overclockers may love 320 ;)
476if ((max_ratio >= min_ratio) && (max_ratio <= 320)) {
477cpuFrequency = (fsbFrequency * max_ratio) / 10;
478if (len >= 3) {
479maxdiv = 1;
480} else {
481maxdiv = 0;
482}
483} else {
484max_ratio = (bus_ratio_max * 10);
485}
486}
487//valv: to be uncommented if Remarq.1 didn't stick
488/*if (bus_ratio_max > 0) bus_ratio = flex_ratio;*/
489p->CPU.MaxRatio = max_ratio;
490p->CPU.MinRatio = min_ratio;
491
492myfsb = fsbFrequency / 1000000;
493verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio/10); // Bungo: fixed wrong Bus-Ratio readout
494currcoef = bus_ratio_max;
495} else {
496msr = rdmsr64(MSR_IA32_PERF_STATUS);
497DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
498currcoef = bitfield(msr, 12, 8); // Bungo: reverted to 2263 state because of wrong old CPUs freq. calculating
499/* Non-integer bus ratio for the max-multi*/
500maxdiv = bitfield(msr, 46, 46);
501/* Non-integer bus ratio for the current-multi (undocumented)*/
502currdiv = bitfield(msr, 14, 14);
503
504// This will always be model >= 3
505if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f)) {
506/* On these models, maxcoef defines TSC freq */
507maxcoef = bitfield(msr, 44, 40);
508} else {
509/* On lower models, currcoef defines TSC freq */
510/* XXX */
511maxcoef = currcoef;
512}
513
514if (maxcoef) {
515if (maxdiv) {
516fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
517} else {
518fsbFrequency = (tscFrequency / maxcoef);
519}
520if (currdiv) {
521cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
522} else {
523cpuFrequency = (fsbFrequency * currcoef);
524}
525DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
526}
527}
528}
529/* Mobile CPU */
530if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28)) {
531p->CPU.Features |= CPU_FEATURE_MOBILE;
532}
533} else if ((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f)) {
534switch(p->CPU.ExtFamily) {
535case 0x00: /* K8 */
536msr = rdmsr64(K8_FIDVID_STATUS);
537maxcoef = bitfield(msr, 21, 16) / 2 + 4;
538currcoef = bitfield(msr, 5, 0) / 2 + 4;
539break;
540
541case 0x01: /* K10 */
542msr = rdmsr64(K10_COFVID_STATUS);
543do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
544// EffFreq: effective frequency interface
545if (bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1)
546{
547//uint64_t mperf = measure_mperf_frequency();
548uint64_t aperf = measure_aperf_frequency();
549cpuFrequency = aperf;
550}
551// NOTE: tsc runs at the maccoeff (non turbo)
552//*not* at the turbo frequency.
553maxcoef = bitfield(msr, 54, 49) / 2 + 4;
554currcoef = bitfield(msr, 5, 0) + 0x10;
555currdiv = 2 << bitfield(msr, 8, 6);
556
557break;
558
559case 0x05: /* K14 */
560msr = rdmsr64(K10_COFVID_STATUS);
561currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
562currdiv = (bitfield(msr, 8, 4) + 1) << 2;
563currdiv += bitfield(msr, 3, 0);
564
565break;
566
567case 0x02: /* K11 */
568// not implimented
569break;
570}
571
572if (maxcoef) {
573if (currdiv) {
574if (!currcoef) {
575currcoef = maxcoef;
576}
577
578if (!cpuFrequency) {
579fsbFrequency = ((tscFrequency * currdiv) / currcoef);
580} else {
581fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
582}
583DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
584} else {
585if (!cpuFrequency) {
586fsbFrequency = (tscFrequency / maxcoef);
587} else {
588fsbFrequency = (cpuFrequency / maxcoef);
589}
590DBG("%d\n", currcoef);
591}
592} else if (currcoef) {
593if (currdiv) {
594fsbFrequency = ((tscFrequency * currdiv) / currcoef);
595DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
596} else {
597fsbFrequency = (tscFrequency / currcoef);
598DBG("%d\n", currcoef);
599}
600}
601if (!cpuFrequency) cpuFrequency = tscFrequency;
602}
603
604#if 0
605if (!fsbFrequency) {
606fsbFrequency = (DEFAULT_FSB * 1000);
607cpuFrequency = tscFrequency;
608DBG("0 ! using the default value for FSB !\n");
609}
610#endif
611
612p->CPU.MaxCoef = maxcoef;
613p->CPU.MaxDiv = maxdiv;
614p->CPU.CurrCoef = currcoef;
615p->CPU.CurrDiv = currdiv;
616p->CPU.TSCFrequency = tscFrequency;
617p->CPU.FSBFrequency = fsbFrequency;
618p->CPU.CPUFrequency = cpuFrequency;
619
620// keep formatted with spaces instead of tabs
621DBG("CPU: Brand String: %s\n", p->CPU.BrandString);
622DBG("CPU: Vendor/Family/ExtFamily: 0x%x/0x%x/0x%x\n", p->CPU.Vendor, p->CPU.Family, p->CPU.ExtFamily);
623DBG("CPU: Model/ExtModel/Stepping: 0x%x/0x%x/0x%x\n", p->CPU.Model, p->CPU.ExtModel, p->CPU.Stepping);
624DBG("CPU: MaxCoef/CurrCoef: 0x%x/0x%x\n", p->CPU.MaxCoef, p->CPU.CurrCoef);
625DBG("CPU: MaxDiv/CurrDiv: 0x%x/0x%x\n", p->CPU.MaxDiv, p->CPU.CurrDiv);
626DBG("CPU: TSCFreq: %dMHz\n", p->CPU.TSCFrequency / 1000000);
627DBG("CPU: FSBFreq: %dMHz\n", p->CPU.FSBFrequency / 1000000);
628DBG("CPU: CPUFreq: %dMHz\n", p->CPU.CPUFrequency / 1000000);
629DBG("CPU: NoCores/NoThreads: %d/%d\n", p->CPU.NoCores, p->CPU.NoThreads);
630DBG("CPU: Features: 0x%08x\n", p->CPU.Features);
631#if DEBUG_CPU
632pause();
633#endif
634}
635

Archive Download this file

Revision: 2344