Chameleon

Chameleon Svn Source Tree

Root/branches/Bungo/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * timeRDTSC()
24 * This routine sets up PIT counter 2 to count down 1/20 of a second.
25 * It pauses until the value is latched in the counter
26 * and then reads the time stamp counter to return to the caller.
27 */
28uint64_t timeRDTSC(void)
29{
30intattempts = 0;
31uint64_t latchTime;
32uint64_tsaveTime,intermediate;
33unsigned int timerValue, lastValue;
34//boolean_tint_enabled;
35/*
36 * Table of correction factors to account for
37 * - timer counter quantization errors, and
38 * - undercounts 0..5
39 */
40#define SAMPLE_CLKS_EXACT(((double) CLKNUM) / 20.0)
41#define SAMPLE_CLKS_INT((int) CLKNUM / 20)
42#define SAMPLE_NSECS(2000000000LL)
43#define SAMPLE_MULTIPLIER(((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
44#define ROUND64(x)((uint64_t)((x) + 0.5))
45uint64_tscale[6] = {
46ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
47ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
48ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
49ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
50ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
51ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
52};
53
54//int_enabled = ml_set_interrupts_enabled(FALSE);
55
56restart:
57if (attempts >= 9) // increase to up to 9 attempts.
58{
59 // This will flash-reboot. TODO: Use tscPanic instead.
60printf("Timestamp counter calibation failed with %d attempts\n", attempts);
61}
62attempts++;
63enable_PIT2();// turn on PIT2
64set_PIT2(0);// reset timer 2 to be zero
65latchTime = rdtsc64();// get the time stamp to time
66latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
67set_PIT2(SAMPLE_CLKS_INT);// set up the timer for (almost) 1/20th a second
68saveTime = rdtsc64();// now time how long a 20th a second is...
69get_PIT2(&lastValue);
70get_PIT2(&lastValue);// read twice, first value may be unreliable
71do {
72intermediate = get_PIT2(&timerValue);
73if (timerValue > lastValue)
74{
75// Timer wrapped
76set_PIT2(0);
77disable_PIT2();
78goto restart;
79}
80lastValue = timerValue;
81} while (timerValue > 5);
82printf("timerValue %d\n",timerValue);
83printf("intermediate 0x%016llx\n",intermediate);
84printf("saveTime 0x%016llx\n",saveTime);
85
86intermediate -= saveTime;// raw count for about 1/20 second
87intermediate *= scale[timerValue];// rescale measured time spent
88intermediate /= SAMPLE_NSECS;// so its exactly 1/20 a second
89intermediate += latchTime;// add on our save fudge
90
91set_PIT2(0);// reset timer 2 to be zero
92disable_PIT2();// turn off PIT 2
93
94//ml_set_interrupts_enabled(int_enabled);
95return intermediate;
96}
97
98/*
99 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
100 */
101static uint64_t measure_tsc_frequency(void)
102{
103uint64_t tscStart;
104uint64_t tscEnd;
105uint64_t tscDelta = 0xffffffffffffffffULL;
106unsigned long pollCount;
107uint64_t retval = 0;
108int i;
109
110/* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
111 * counter 2. We run this loop 3 times to make sure the cache
112 * is hot and we take the minimum delta from all of the runs.
113 * That is to say that we're biased towards measuring the minimum
114 * number of TSC ticks that occur while waiting for the timer to
115 * expire. That theoretically helps avoid inconsistencies when
116 * running under a VM if the TSC is not virtualized and the host
117 * steals time. The TSC is normally virtualized for VMware.
118 */
119for(i = 0; i < 10; ++i)
120{
121enable_PIT2();
122set_PIT2_mode0(CALIBRATE_LATCH);
123tscStart = rdtsc64();
124pollCount = poll_PIT2_gate();
125tscEnd = rdtsc64();
126/* The poll loop must have run at least a few times for accuracy */
127if (pollCount <= 1) {
128continue;
129}
130/* The TSC must increment at LEAST once every millisecond.
131 * We should have waited exactly 30 msec so the TSC delta should
132 * be >= 30. Anything less and the processor is way too slow.
133 */
134if ((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC) {
135continue;
136}
137// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
138if ( (tscEnd - tscStart) < tscDelta ) {
139tscDelta = tscEnd - tscStart;
140}
141}
142/* tscDelta is now the least number of TSC ticks the processor made in
143 * a timespan of 0.03 s (e.g. 30 milliseconds)
144 * Linux thus divides by 30 which gives the answer in kiloHertz because
145 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
146 * Hz so we need to convert our milliseconds to seconds. Since we're
147 * dividing by the milliseconds, we simply multiply by 1000.
148 */
149
150/* Unlike linux, we're not limited to 32-bit, but we do need to take care
151 * that we're going to multiply by 1000 first so we do need at least some
152 * arithmetic headroom. For now, 32-bit should be enough.
153 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
154 */
155if (tscDelta > (1ULL<<32)) {
156retval = 0;
157} else {
158retval = tscDelta * 1000 / 30;
159}
160disable_PIT2();
161return retval;
162}
163
164/*
165 * Original comment/code:
166 * "DFE: Measures the Max Performance Frequency in Hz (64-bit)"
167 *
168 * Measures the Actual Performance Frequency in Hz (64-bit)
169 * (just a naming change, mperf --> aperf )
170 */
171static uint64_t measure_aperf_frequency(void)
172{
173uint64_t aperfStart;
174uint64_t aperfEnd;
175uint64_t aperfDelta = 0xffffffffffffffffULL;
176unsigned long pollCount;
177uint64_t retval = 0;
178int i;
179
180/* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
181 * counter 2. We run this loop 3 times to make sure the cache
182 * is hot and we take the minimum delta from all of the runs.
183 * That is to say that we're biased towards measuring the minimum
184 * number of APERF ticks that occur while waiting for the timer to
185 * expire.
186 */
187for(i = 0; i < 10; ++i)
188{
189enable_PIT2();
190set_PIT2_mode0(CALIBRATE_LATCH);
191aperfStart = rdmsr64(MSR_AMD_APERF);
192pollCount = poll_PIT2_gate();
193aperfEnd = rdmsr64(MSR_AMD_APERF);
194/* The poll loop must have run at least a few times for accuracy */
195if (pollCount <= 1) {
196continue;
197}
198/* The TSC must increment at LEAST once every millisecond.
199 * We should have waited exactly 30 msec so the APERF delta should
200 * be >= 30. Anything less and the processor is way too slow.
201 */
202if ((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC) {
203continue;
204}
205// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
206if ( (aperfEnd - aperfStart) < aperfDelta ) {
207aperfDelta = aperfEnd - aperfStart;
208}
209}
210/* mperfDelta is now the least number of MPERF ticks the processor made in
211 * a timespan of 0.03 s (e.g. 30 milliseconds)
212 */
213
214if (aperfDelta > (1ULL<<32)) {
215retval = 0;
216} else {
217retval = aperfDelta * 1000 / 30;
218}
219disable_PIT2();
220return retval;
221}
222
223/*
224 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
225 * - multi. is read from a specific MSR. In the case of Intel, there is:
226 * a max multi. (used to calculate the FSB freq.),
227 * and a current multi. (used to calculate the CPU freq.)
228 * - fsbFrequency = tscFrequency / multi
229 * - cpuFrequency = fsbFrequency * multi
230 */
231void scan_cpu(PlatformInfo_t *p)
232{
233uint64_ttscFrequency = 0;
234uint64_tfsbFrequency = 0;
235uint64_tcpuFrequency = 0;
236uint64_tmsr = 0;
237uint64_tflex_ratio = 0;
238uint32_tmax_ratio = 0;
239uint32_tmin_ratio = 0;
240uint8_tbus_ratio_max = 0;
241uint8_tcurrdiv = 0;
242uint8_tcurrcoef = 0;
243uint8_tmaxdiv = 0;
244uint8_tmaxcoef = 0;
245const char*newratio;
246intlen = 0;
247intmyfsb = 0;
248uint8_tbus_ratio_min = 0;
249uint32_treg[4];
250charstr[128];
251
252/* get cpuid values */
253do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
254do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
255
256do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
257do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
258do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
259
260do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
261if (p->CPU.CPUID[CPUID_0][0] >= 0x5) {
262do_cpuid(5, p->CPU.CPUID[CPUID_5]);
263}
264if (p->CPU.CPUID[CPUID_0][0] >= 6) {
265do_cpuid(6, p->CPU.CPUID[CPUID_6]);
266}
267if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8) {
268do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
269do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
270} else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1) {
271do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
272}
273
274// #if DEBUG_CPU
275{
276inti;
277DBG("CPUID Raw Values:\n");
278for (i = 0; i < CPUID_MAX; i++) {
279DBG("%02d: %08x-%08x-%08x-%08x\n", i,
280 p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
281 p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
282}
283}
284// #endif
285
286/*
287 EAX (Intel):
288 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
289 +--------+----------------+--------+----+----+--------+--------+--------+
290 |########|Extended family |Extmodel|####|type|familyid| model |stepping|
291 +--------+----------------+--------+----+----+--------+--------+--------+
292
293 EAX (AMD):
294 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
295 +--------+----------------+--------+----+----+--------+--------+--------+
296 |########|Extended family |Extmodel|####|####|familyid| model |stepping|
297 +--------+----------------+--------+----+----+--------+--------+--------+
298*/
299
300p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
301p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
302p->CPU.Stepping= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);// stepping = cpu_feat_eax & 0xF;
303p->CPU.Model= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);// model = (cpu_feat_eax >> 4) & 0xF;
304p->CPU.Family= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);// family = (cpu_feat_eax >> 8) & 0xF;
305//p->CPU.Type= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 13, 12);// type = (cpu_feat_eax >> 12) & 0x3;
306p->CPU.ExtModel= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);// ext_model = (cpu_feat_eax >> 16) & 0xF;
307p->CPU.ExtFamily= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);// ext_family = (cpu_feat_eax >> 20) & 0xFF;
308
309p->CPU.Model += (p->CPU.ExtModel << 4);
310
311if (p->CPU.Vendor == CPUID_VENDOR_INTEL)
312{
313/*
314 * Find the number of enabled cores and threads
315 * (which determines whether SMT/Hyperthreading is active).
316 */
317switch (p->CPU.Model)
318{
319case CPU_MODEL_NEHALEM:
320case CPU_MODEL_FIELDS:
321case CPU_MODEL_DALES:
322case CPU_MODEL_NEHALEM_EX:
323case CPU_MODEL_JAKETOWN:
324case CPU_MODEL_SANDYBRIDGE:
325case CPU_MODEL_IVYBRIDGE:
326case CPU_MODEL_HASWELL:
327case CPU_MODEL_HASWELL_SVR:
328//case CPU_MODEL_HASWELL_H:
329case CPU_MODEL_HASWELL_ULT:
330case CPU_MODEL_CRYSTALWELL:
331msr = rdmsr64(MSR_CORE_THREAD_COUNT);
332p->CPU.NoCores= (uint8_t)bitfield((uint32_t)msr, 31, 16);
333p->CPU.NoThreads= (uint8_t)bitfield((uint32_t)msr, 15, 0);
334break;
335
336case CPU_MODEL_DALES_32NM:
337case CPU_MODEL_WESTMERE:
338case CPU_MODEL_WESTMERE_EX:
339msr = rdmsr64(MSR_CORE_THREAD_COUNT);
340p->CPU.NoCores= (uint8_t)bitfield((uint32_t)msr, 19, 16);
341p->CPU.NoThreads= (uint8_t)bitfield((uint32_t)msr, 15, 0);
342break;
343
344default:
345p->CPU.NoCores = 0;
346break;
347} // end switch
348}
349
350if (p->CPU.NoCores == 0)
351{
352p->CPU.NoCores= (uint8_t)(p->CPU.CoresPerPackage & 0xff);
353p->CPU.NoThreads= (uint8_t)(p->CPU.LogicalPerPackage & 0xff);
354}
355
356/* get BrandString (if supported) */
357/* Copyright: from Apple's XNU cpuid.c */
358if (p->CPU.CPUID[CPUID_80][0] > 0x80000004)
359{
360char *s;
361bzero(str, 128);
362/*
363 * The BrandString 48 bytes (max), guaranteed to
364 * be NULL terminated.
365 */
366do_cpuid(0x80000002, reg);
367memcpy(&str[0], (char *)reg, 16);
368do_cpuid(0x80000003, reg);
369memcpy(&str[16], (char *)reg, 16);
370do_cpuid(0x80000004, reg);
371memcpy(&str[32], (char *)reg, 16);
372for (s = str; *s != '\0'; s++)
373{
374if (*s != ' ')
375{
376break;
377}
378}
379strlcpy(p->CPU.BrandString, s, 48);
380
381if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1)))
382{
383/*
384 * This string means we have a firmware-programmable brand string,
385 * and the firmware couldn't figure out what sort of CPU we have.
386 */
387p->CPU.BrandString[0] = '\0';
388}
389p->CPU.BrandString[47] = '\0';
390//DBG("Brandstring = %s\n", p->CPU.BrandString);
391}
392
393//workaround for N270. I don't know why it detected wrong
394// MSR is *NOT* available on the Intel Atom CPU
395if ((p->CPU.Model == CPU_MODEL_ATOM) && (strstr(p->CPU.BrandString, "270")))
396{
397p->CPU.NoCores= 1;
398p->CPU.NoThreads= 2;
399}
400
401if (p->CPU.Vendor == CPUID_VENDOR_AMD)
402{
403p->CPU.NoThreads= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
404p->CPU.NoCores= (uint8_t)bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
405}
406
407/* setup features */
408if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0) {
409p->CPU.Features |= CPU_FEATURE_MMX;
410}
411if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0) {
412p->CPU.Features |= CPU_FEATURE_SSE;
413}
414if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0) {
415p->CPU.Features |= CPU_FEATURE_SSE2;
416}
417if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0) {
418p->CPU.Features |= CPU_FEATURE_SSE3;
419}
420if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0) {
421p->CPU.Features |= CPU_FEATURE_SSE41;
422}
423if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0) {
424p->CPU.Features |= CPU_FEATURE_SSE42;
425}
426if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0) {
427p->CPU.Features |= CPU_FEATURE_EM64T;
428}
429if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0) {
430p->CPU.Features |= CPU_FEATURE_MSR;
431}
432//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
433if (p->CPU.NoThreads > p->CPU.NoCores) {
434p->CPU.Features |= CPU_FEATURE_HTT;
435}
436
437tscFrequency = measure_tsc_frequency();
438DBG("cpu freq classic = 0x%016llx\n", tscFrequency);
439/* if usual method failed */
440if ( tscFrequency < 1000 )//TEST
441{
442tscFrequency = timeRDTSC() * 20;//measure_tsc_frequency();
443// DBG("cpu freq timeRDTSC = 0x%016llx\n", tscFrequency);
444} else {
445// DBG("cpu freq timeRDTSC = 0x%016llxn", timeRDTSC() * 20);
446}
447
448fsbFrequency = 0;
449cpuFrequency = 0;
450
451if (p->CPU.Vendor == CPUID_VENDOR_INTEL && ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03))) {
452int intelCPU = p->CPU.Model;
453if (p->CPU.Family == 0x06) {
454/* Nehalem CPU model */
455switch (p->CPU.Model) {
456case CPU_MODEL_NEHALEM:
457case CPU_MODEL_FIELDS:
458case CPU_MODEL_DALES:
459case CPU_MODEL_DALES_32NM:
460case CPU_MODEL_WESTMERE:
461case CPU_MODEL_NEHALEM_EX:
462case CPU_MODEL_WESTMERE_EX:
463/* --------------------------------------------------------- */
464case CPU_MODEL_SANDYBRIDGE:
465case CPU_MODEL_JAKETOWN:
466case CPU_MODEL_IVYBRIDGE_XEON:
467case CPU_MODEL_IVYBRIDGE:
468case CPU_MODEL_HASWELL:
469case CPU_MODEL_HASWELL_SVR:
470
471case CPU_MODEL_HASWELL_ULT:
472case CPU_MODEL_CRYSTALWELL:
473/* --------------------------------------------------------- */
474msr = rdmsr64(MSR_PLATFORM_INFO);
475DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
476bus_ratio_max = bitfield(msr, 15, 8);
477bus_ratio_min = bitfield(msr, 47, 40); //valv: not sure about this one (Remarq.1)
478msr = rdmsr64(MSR_FLEX_RATIO);
479DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
480if (bitfield(msr, 16, 16))
481{
482flex_ratio = bitfield(msr, 15, 8);
483/* bcc9: at least on the gigabyte h67ma-ud2h,
484 where the cpu multipler can't be changed to
485 allow overclocking, the flex_ratio msr has unexpected (to OSX)
486 contents.These contents cause mach_kernel to
487 fail to compute the bus ratio correctly, instead
488 causing the system to crash since tscGranularity
489 is inadvertently set to 0.
490 */
491if (flex_ratio == 0)
492{
493/* Clear bit 16 (evidently the presence bit) */
494wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
495msr = rdmsr64(MSR_FLEX_RATIO);
496DBG("Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
497}
498else
499{
500if (bus_ratio_max > flex_ratio)
501{
502bus_ratio_max = flex_ratio;
503}
504}
505}
506
507if (bus_ratio_max)
508{
509fsbFrequency = (tscFrequency / bus_ratio_max);
510}
511
512//valv: Turbo Ratio Limit
513if ((intelCPU != 0x2e) && (intelCPU != 0x2f))
514{
515msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
516
517cpuFrequency = bus_ratio_max * fsbFrequency;
518max_ratio = bus_ratio_max * 10;
519}
520else
521{
522cpuFrequency = tscFrequency;
523}
524if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4))
525{
526max_ratio = atoi(newratio);
527max_ratio = (max_ratio * 10);
528if (len >= 3)
529{
530max_ratio = (max_ratio + 5);
531}
532
533verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
534
535// extreme overclockers may love 320 ;)
536if ((max_ratio >= min_ratio) && (max_ratio <= 320))
537{
538cpuFrequency = (fsbFrequency * max_ratio) / 10;
539if (len >= 3)
540{
541maxdiv = 1;
542}
543else
544{
545maxdiv = 0;
546}
547}
548else
549{
550max_ratio = (bus_ratio_max * 10);
551}
552}
553//valv: to be uncommented if Remarq.1 didn't stick
554/*if (bus_ratio_max > 0) bus_ratio = flex_ratio;*/
555p->CPU.MaxRatio = max_ratio;
556p->CPU.MinRatio = min_ratio;
557
558myfsb = fsbFrequency / 1000000;
559verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio/10); // Bungo: fixed wrong Bus-Ratio readout
560currcoef = bus_ratio_max;
561
562break;
563
564default:
565msr = rdmsr64(MSR_IA32_PERF_STATUS);
566DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
567currcoef = bitfield(msr, 12, 8); // Bungo: reverted to 2263 state because of wrong old CPUs freq. calculating
568/* Non-integer bus ratio for the max-multi*/
569maxdiv = bitfield(msr, 46, 46);
570/* Non-integer bus ratio for the current-multi (undocumented)*/
571currdiv = bitfield(msr, 14, 14);
572
573// This will always be model >= 3
574if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f)) {
575/* On these models, maxcoef defines TSC freq */
576maxcoef = bitfield(msr, 44, 40);
577} else {
578/* On lower models, currcoef defines TSC freq */
579/* XXX */
580maxcoef = currcoef;
581}
582
583if (maxcoef) {
584if (maxdiv) {
585fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
586} else {
587fsbFrequency = (tscFrequency / maxcoef);
588}
589if (currdiv) {
590cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
591} else {
592cpuFrequency = (fsbFrequency * currcoef);
593}
594DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
595}
596break;
597}
598}
599/* Mobile CPU */
600if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28)) {
601p->CPU.Features |= CPU_FEATURE_MOBILE;
602}
603} else if ((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f)) {
604switch(p->CPU.ExtFamily) {
605case 0x00: /* K8 */
606msr = rdmsr64(K8_FIDVID_STATUS);
607maxcoef = bitfield(msr, 21, 16) / 2 + 4;
608currcoef = bitfield(msr, 5, 0) / 2 + 4;
609break;
610
611case 0x01: /* K10 */
612msr = rdmsr64(K10_COFVID_STATUS);
613do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
614// EffFreq: effective frequency interface
615if (bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1) {
616//uint64_t mperf = measure_mperf_frequency();
617uint64_t aperf = measure_aperf_frequency();
618cpuFrequency = aperf;
619}
620// NOTE: tsc runs at the maccoeff (non turbo)
621//*not* at the turbo frequency.
622maxcoef = bitfield(msr, 54, 49) / 2 + 4;
623currcoef = bitfield(msr, 5, 0) + 0x10;
624currdiv = 2 << bitfield(msr, 8, 6);
625
626break;
627
628case 0x05: /* K14 */
629msr = rdmsr64(K10_COFVID_STATUS);
630currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
631currdiv = (bitfield(msr, 8, 4) + 1) << 2;
632currdiv += bitfield(msr, 3, 0);
633
634break;
635
636case 0x02: /* K11 */
637// not implimented
638break;
639}
640
641if (maxcoef) {
642if (currdiv) {
643if (!currcoef) {
644currcoef = maxcoef;
645}
646
647if (!cpuFrequency) {
648fsbFrequency = ((tscFrequency * currdiv) / currcoef);
649} else {
650fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
651}
652DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
653} else {
654if (!cpuFrequency) {
655fsbFrequency = (tscFrequency / maxcoef);
656} else {
657fsbFrequency = (cpuFrequency / maxcoef);
658}
659DBG("%d\n", currcoef);
660}
661} else if (currcoef) {
662if (currdiv) {
663fsbFrequency = ((tscFrequency * currdiv) / currcoef);
664DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
665} else {
666fsbFrequency = (tscFrequency / currcoef);
667DBG("%d\n", currcoef);
668}
669}
670if (!cpuFrequency) cpuFrequency = tscFrequency;
671}
672
673#if 0
674if (!fsbFrequency) {
675fsbFrequency = (DEFAULT_FSB * 1000);
676cpuFrequency = tscFrequency;
677DBG("0 ! using the default value for FSB !\n");
678}
679
680DBG("cpu freq = 0x%016llxn", timeRDTSC() * 20);
681
682#endif
683
684p->CPU.MaxCoef = maxcoef;
685p->CPU.MaxDiv = maxdiv;
686p->CPU.CurrCoef = currcoef;
687p->CPU.CurrDiv = currdiv;
688p->CPU.TSCFrequency = tscFrequency;
689p->CPU.FSBFrequency = fsbFrequency;
690p->CPU.CPUFrequency = cpuFrequency;
691
692// keep formatted with spaces instead of tabs
693DBG("\n---------------------------------------------\n");
694 DBG("------------------ CPU INFO -----------------\n");
695DBG("---------------------------------------------\n");
696DBG("Brand String: %s\n", p->CPU.BrandString); // Processor name (BIOS)
697DBG("Vendor: 0x%x\n", p->CPU.Vendor); // Vendor ex: GenuineIntel
698DBG("Family: 0x%x\n", p->CPU.Family); // Family ex: 6 (06h)
699DBG("ExtFamily: 0x%x\n", p->CPU.ExtFamily);
700DBG("Signature: %x\n", p->CPU.Signature); // CPUID signature
701DBG("Model: 0x%x\n", p->CPU.Model); // Model ex: 37 (025h)
702DBG("ExtModel: 0x%x\n", p->CPU.ExtModel);
703DBG("Stepping: 0x%x\n", p->CPU.Stepping); // Stepping ex: 5 (05h)
704DBG("MaxCoef: 0x%x\n", p->CPU.MaxCoef);
705DBG("CurrCoef: 0x%x\n", p->CPU.CurrCoef);
706DBG("MaxDiv: 0x%x\n", p->CPU.MaxDiv);
707DBG("CurrDiv: 0x%x\n", p->CPU.CurrDiv);
708DBG("TSCFreq: %dMHz\n", p->CPU.TSCFrequency / 1000000);
709DBG("FSBFreq: %dMHz\n", p->CPU.FSBFrequency / 1000000);
710DBG("CPUFreq: %dMHz\n", p->CPU.CPUFrequency / 1000000);
711DBG("Cores: %d\n", p->CPU.NoCores); // Cores
712DBG("Logical processor: %d\n", p->CPU.NoThreads); // Logical procesor
713DBG("Features: 0x%08x\n", p->CPU.Features);
714
715DBG("\n---------------------------------------------\n");
716#if DEBUG_CPU
717pause();
718#endif
719}
720

Archive Download this file

Revision: 2469