Chameleon

Chameleon Svn Source Tree

Root/trunk/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * timeRDTSC()
24 * This routine sets up PIT counter 2 to count down 1/20 of a second.
25 * It pauses until the value is latched in the counter
26 * and then reads the time stamp counter to return to the caller.
27 */
28uint64_t timeRDTSC(void)
29{
30intattempts = 0;
31uint64_t latchTime;
32uint64_tsaveTime,intermediate;
33unsigned int timerValue, lastValue;
34//boolean_tint_enabled;
35/*
36 * Table of correction factors to account for
37 * - timer counter quantization errors, and
38 * - undercounts 0..5
39 */
40#define SAMPLE_CLKS_EXACT(((double) CLKNUM) / 20.0)
41#define SAMPLE_CLKS_INT((int) CLKNUM / 20)
42#define SAMPLE_NSECS(2000000000LL)
43#define SAMPLE_MULTIPLIER(((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
44#define ROUND64(x)((uint64_t)((x) + 0.5))
45uint64_tscale[6] = {
46ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
47ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
48ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
49ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
50ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
51ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
52};
53
54//int_enabled = ml_set_interrupts_enabled(FALSE);
55
56restart:
57if (attempts >= 9) // increase to up to 9 attempts.
58{
59 // This will flash-reboot. TODO: Use tscPanic instead.
60printf("Timestamp counter calibation failed with %d attempts\n", attempts);
61}
62attempts++;
63enable_PIT2();// turn on PIT2
64set_PIT2(0);// reset timer 2 to be zero
65latchTime = rdtsc64();// get the time stamp to time
66latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
67set_PIT2(SAMPLE_CLKS_INT);// set up the timer for (almost) 1/20th a second
68saveTime = rdtsc64();// now time how long a 20th a second is...
69get_PIT2(&lastValue);
70get_PIT2(&lastValue);// read twice, first value may be unreliable
71do {
72intermediate = get_PIT2(&timerValue);
73if (timerValue > lastValue)
74{
75// Timer wrapped
76set_PIT2(0);
77disable_PIT2();
78goto restart;
79}
80lastValue = timerValue;
81} while (timerValue > 5);
82printf("timerValue %d\n",timerValue);
83printf("intermediate 0x%016llx\n",intermediate);
84printf("saveTime 0x%016llx\n",saveTime);
85
86intermediate -= saveTime;// raw count for about 1/20 second
87intermediate *= scale[timerValue];// rescale measured time spent
88intermediate /= SAMPLE_NSECS;// so its exactly 1/20 a second
89intermediate += latchTime;// add on our save fudge
90
91set_PIT2(0);// reset timer 2 to be zero
92disable_PIT2();// turn off PIT 2
93
94//ml_set_interrupts_enabled(int_enabled);
95return intermediate;
96}
97
98/*
99 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
100 */
101static uint64_t measure_tsc_frequency(void)
102{
103uint64_t tscStart;
104uint64_t tscEnd;
105uint64_t tscDelta = 0xffffffffffffffffULL;
106unsigned long pollCount;
107uint64_t retval = 0;
108int i;
109
110/* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
111 * counter 2. We run this loop 3 times to make sure the cache
112 * is hot and we take the minimum delta from all of the runs.
113 * That is to say that we're biased towards measuring the minimum
114 * number of TSC ticks that occur while waiting for the timer to
115 * expire. That theoretically helps avoid inconsistencies when
116 * running under a VM if the TSC is not virtualized and the host
117 * steals time. The TSC is normally virtualized for VMware.
118 */
119for(i = 0; i < 10; ++i)
120{
121enable_PIT2();
122set_PIT2_mode0(CALIBRATE_LATCH);
123tscStart = rdtsc64();
124pollCount = poll_PIT2_gate();
125tscEnd = rdtsc64();
126/* The poll loop must have run at least a few times for accuracy */
127if (pollCount <= 1) {
128continue;
129}
130/* The TSC must increment at LEAST once every millisecond.
131 * We should have waited exactly 30 msec so the TSC delta should
132 * be >= 30. Anything less and the processor is way too slow.
133 */
134if ((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC) {
135continue;
136}
137// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
138if ( (tscEnd - tscStart) < tscDelta ) {
139tscDelta = tscEnd - tscStart;
140}
141}
142/* tscDelta is now the least number of TSC ticks the processor made in
143 * a timespan of 0.03 s (e.g. 30 milliseconds)
144 * Linux thus divides by 30 which gives the answer in kiloHertz because
145 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
146 * Hz so we need to convert our milliseconds to seconds. Since we're
147 * dividing by the milliseconds, we simply multiply by 1000.
148 */
149
150/* Unlike linux, we're not limited to 32-bit, but we do need to take care
151 * that we're going to multiply by 1000 first so we do need at least some
152 * arithmetic headroom. For now, 32-bit should be enough.
153 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
154 */
155if (tscDelta > (1ULL<<32)) {
156retval = 0;
157} else {
158retval = tscDelta * 1000 / 30;
159}
160disable_PIT2();
161return retval;
162}
163
164/*
165 * Original comment/code:
166 * "DFE: Measures the Max Performance Frequency in Hz (64-bit)"
167 *
168 * Measures the Actual Performance Frequency in Hz (64-bit)
169 * (just a naming change, mperf --> aperf )
170 */
171static uint64_t measure_aperf_frequency(void)
172{
173uint64_t aperfStart;
174uint64_t aperfEnd;
175uint64_t aperfDelta = 0xffffffffffffffffULL;
176unsigned long pollCount;
177uint64_t retval = 0;
178int i;
179
180/* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
181 * counter 2. We run this loop 3 times to make sure the cache
182 * is hot and we take the minimum delta from all of the runs.
183 * That is to say that we're biased towards measuring the minimum
184 * number of APERF ticks that occur while waiting for the timer to
185 * expire.
186 */
187for(i = 0; i < 10; ++i)
188{
189enable_PIT2();
190set_PIT2_mode0(CALIBRATE_LATCH);
191aperfStart = rdmsr64(MSR_AMD_APERF);
192pollCount = poll_PIT2_gate();
193aperfEnd = rdmsr64(MSR_AMD_APERF);
194/* The poll loop must have run at least a few times for accuracy */
195if (pollCount <= 1)
196{
197continue;
198}
199/* The TSC must increment at LEAST once every millisecond.
200 * We should have waited exactly 30 msec so the APERF delta should
201 * be >= 30. Anything less and the processor is way too slow.
202 */
203if ((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC)
204{
205continue;
206}
207// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
208if ( (aperfEnd - aperfStart) < aperfDelta )
209{
210aperfDelta = aperfEnd - aperfStart;
211}
212}
213/* mperfDelta is now the least number of MPERF ticks the processor made in
214 * a timespan of 0.03 s (e.g. 30 milliseconds)
215 */
216
217if (aperfDelta > (1ULL<<32))
218{
219retval = 0;
220}
221else
222{
223retval = aperfDelta * 1000 / 30;
224}
225disable_PIT2();
226return retval;
227}
228
229/*
230 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
231 * - multi. is read from a specific MSR. In the case of Intel, there is:
232 * a max multi. (used to calculate the FSB freq.),
233 * and a current multi. (used to calculate the CPU freq.)
234 * - fsbFrequency = tscFrequency / multi
235 * - cpuFrequency = fsbFrequency * multi
236 */
237void scan_cpu(PlatformInfo_t *p)
238{
239uint64_ttscFrequency = 0;
240uint64_tfsbFrequency = 0;
241uint64_tcpuFrequency = 0;
242uint64_tmsr = 0;
243uint64_tflex_ratio = 0;
244uint32_tmax_ratio = 0;
245uint32_tmin_ratio = 0;
246uint8_tbus_ratio_max = 0;
247uint8_tcurrdiv = 0;
248uint8_tcurrcoef = 0;
249uint8_tmaxdiv = 0;
250uint8_tmaxcoef = 0;
251const char*newratio;
252intlen = 0;
253intmyfsb = 0;
254uint8_tbus_ratio_min = 0;
255uint32_treg[4];
256charstr[128];
257
258/* get cpuid values */
259do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
260do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
261
262do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
263do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
264do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
265
266do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
267if (p->CPU.CPUID[CPUID_0][0] >= 0x5)
268{
269do_cpuid(5, p->CPU.CPUID[CPUID_5]);
270}
271if (p->CPU.CPUID[CPUID_0][0] >= 6)
272{
273do_cpuid(6, p->CPU.CPUID[CPUID_6]);
274}
275if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8)
276{
277do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
278do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
279}
280else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1)
281{
282do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
283}
284
285// #if DEBUG_CPU
286{
287inti;
288DBG("CPUID Raw Values:\n");
289for (i = 0; i < CPUID_MAX; i++) {
290DBG("%02d: %08x-%08x-%08x-%08x\n", i,
291 p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
292 p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
293}
294}
295// #endif
296
297/*
298 EAX (Intel):
299 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
300 +--------+----------------+--------+----+----+--------+--------+--------+
301 |########|Extended family |Extmodel|####|type|familyid| model |stepping|
302 +--------+----------------+--------+----+----+--------+--------+--------+
303
304 EAX (AMD):
305 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
306 +--------+----------------+--------+----+----+--------+--------+--------+
307 |########|Extended family |Extmodel|####|####|familyid| model |stepping|
308 +--------+----------------+--------+----+----+--------+--------+--------+
309*/
310
311p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
312p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
313p->CPU.Stepping= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);// stepping = cpu_feat_eax & 0xF;
314p->CPU.Model= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);// model = (cpu_feat_eax >> 4) & 0xF;
315p->CPU.Family= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);// family = (cpu_feat_eax >> 8) & 0xF;
316//p->CPU.Type= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 13, 12);// type = (cpu_feat_eax >> 12) & 0x3;
317p->CPU.ExtModel= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);// ext_model = (cpu_feat_eax >> 16) & 0xF;
318p->CPU.ExtFamily= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);// ext_family = (cpu_feat_eax >> 20) & 0xFF;
319
320p->CPU.Model += (p->CPU.ExtModel << 4);
321
322if (p->CPU.Vendor == CPUID_VENDOR_INTEL)
323{
324/*
325 * Find the number of enabled cores and threads
326 * (which determines whether SMT/Hyperthreading is active).
327 */
328switch (p->CPU.Model)
329{
330case CPU_MODEL_NEHALEM:
331case CPU_MODEL_FIELDS:
332case CPU_MODEL_DALES:
333case CPU_MODEL_NEHALEM_EX:
334case CPU_MODEL_JAKETOWN:
335case CPU_MODEL_SANDYBRIDGE:
336case CPU_MODEL_IVYBRIDGE:
337case CPU_MODEL_HASWELL:
338case CPU_MODEL_HASWELL_SVR:
339//case CPU_MODEL_HASWELL_H:
340case CPU_MODEL_HASWELL_ULT:
341case CPU_MODEL_CRYSTALWELL:
342msr = rdmsr64(MSR_CORE_THREAD_COUNT);
343p->CPU.NoCores= (uint8_t)bitfield((uint32_t)msr, 31, 16);
344p->CPU.NoThreads= (uint8_t)bitfield((uint32_t)msr, 15, 0);
345break;
346
347case CPU_MODEL_DALES_32NM:
348case CPU_MODEL_WESTMERE:
349case CPU_MODEL_WESTMERE_EX:
350msr = rdmsr64(MSR_CORE_THREAD_COUNT);
351p->CPU.NoCores= (uint8_t)bitfield((uint32_t)msr, 19, 16);
352p->CPU.NoThreads= (uint8_t)bitfield((uint32_t)msr, 15, 0);
353break;
354
355default:
356p->CPU.NoCores = 0;
357break;
358} // end switch
359}
360
361if (p->CPU.NoCores == 0)
362{
363p->CPU.NoCores= (uint8_t)(p->CPU.CoresPerPackage & 0xff);
364p->CPU.NoThreads= (uint8_t)(p->CPU.LogicalPerPackage & 0xff);
365}
366
367/* get BrandString (if supported) */
368/* Copyright: from Apple's XNU cpuid.c */
369if (p->CPU.CPUID[CPUID_80][0] > 0x80000004)
370{
371char *s;
372bzero(str, 128);
373/*
374 * The BrandString 48 bytes (max), guaranteed to
375 * be NULL terminated.
376 */
377do_cpuid(0x80000002, reg);
378memcpy(&str[0], (char *)reg, 16);
379do_cpuid(0x80000003, reg);
380memcpy(&str[16], (char *)reg, 16);
381do_cpuid(0x80000004, reg);
382memcpy(&str[32], (char *)reg, 16);
383for (s = str; *s != '\0'; s++)
384{
385if (*s != ' ')
386{
387break;
388}
389}
390strlcpy(p->CPU.BrandString, s, 48);
391
392if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1)))
393{
394/*
395 * This string means we have a firmware-programmable brand string,
396 * and the firmware couldn't figure out what sort of CPU we have.
397 */
398p->CPU.BrandString[0] = '\0';
399}
400p->CPU.BrandString[47] = '\0';
401//DBG("Brandstring = %s\n", p->CPU.BrandString);
402}
403
404//workaround for N270. I don't know why it detected wrong
405// MSR is *NOT* available on the Intel Atom CPU
406if ((p->CPU.Model == CPU_MODEL_ATOM) && (strstr(p->CPU.BrandString, "270")))
407{
408p->CPU.NoCores= 1;
409p->CPU.NoThreads= 2;
410}
411
412if (p->CPU.Vendor == CPUID_VENDOR_AMD)
413{
414p->CPU.NoThreads= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
415p->CPU.NoCores= (uint8_t)bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
416}
417
418/* setup features */
419if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0)
420{
421p->CPU.Features |= CPU_FEATURE_MMX;
422}
423
424if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0)
425{
426p->CPU.Features |= CPU_FEATURE_SSE;
427}
428
429if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0)
430{
431p->CPU.Features |= CPU_FEATURE_SSE2;
432}
433
434if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0)
435{
436p->CPU.Features |= CPU_FEATURE_SSE3;
437}
438
439if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0)
440{
441p->CPU.Features |= CPU_FEATURE_SSE41;
442}
443
444if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0)
445{
446p->CPU.Features |= CPU_FEATURE_SSE42;
447}
448
449if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0)
450{
451p->CPU.Features |= CPU_FEATURE_EM64T;
452}
453
454if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0)
455{
456p->CPU.Features |= CPU_FEATURE_MSR;
457}
458
459//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
460
461if (p->CPU.NoThreads > p->CPU.NoCores)
462{
463p->CPU.Features |= CPU_FEATURE_HTT;
464}
465
466tscFrequency = measure_tsc_frequency();
467DBG("cpu freq classic = 0x%016llx\n", tscFrequency);
468/* if usual method failed */
469if ( tscFrequency < 1000 )//TEST
470{
471tscFrequency = timeRDTSC() * 20;//measure_tsc_frequency();
472// DBG("cpu freq timeRDTSC = 0x%016llx\n", tscFrequency);
473} else {
474// DBG("cpu freq timeRDTSC = 0x%016llxn", timeRDTSC() * 20);
475}
476
477fsbFrequency = 0;
478cpuFrequency = 0;
479
480if (p->CPU.Vendor == CPUID_VENDOR_INTEL && ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03))) {
481int intelCPU = p->CPU.Model;
482if (p->CPU.Family == 0x06) {
483/* Nehalem CPU model */
484switch (p->CPU.Model) {
485case CPU_MODEL_NEHALEM:
486case CPU_MODEL_FIELDS:
487case CPU_MODEL_DALES:
488case CPU_MODEL_DALES_32NM:
489case CPU_MODEL_WESTMERE:
490case CPU_MODEL_NEHALEM_EX:
491case CPU_MODEL_WESTMERE_EX:
492/* --------------------------------------------------------- */
493case CPU_MODEL_SANDYBRIDGE:
494case CPU_MODEL_JAKETOWN:
495case CPU_MODEL_IVYBRIDGE_XEON:
496case CPU_MODEL_IVYBRIDGE:
497case CPU_MODEL_HASWELL:
498case CPU_MODEL_HASWELL_SVR:
499
500case CPU_MODEL_HASWELL_ULT:
501case CPU_MODEL_CRYSTALWELL:
502/* --------------------------------------------------------- */
503msr = rdmsr64(MSR_PLATFORM_INFO);
504DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
505bus_ratio_max = bitfield(msr, 15, 8);
506bus_ratio_min = bitfield(msr, 47, 40); //valv: not sure about this one (Remarq.1)
507msr = rdmsr64(MSR_FLEX_RATIO);
508DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
509if (bitfield(msr, 16, 16))
510{
511flex_ratio = bitfield(msr, 15, 8);
512/* bcc9: at least on the gigabyte h67ma-ud2h,
513 where the cpu multipler can't be changed to
514 allow overclocking, the flex_ratio msr has unexpected (to OSX)
515 contents.These contents cause mach_kernel to
516 fail to compute the bus ratio correctly, instead
517 causing the system to crash since tscGranularity
518 is inadvertently set to 0.
519 */
520if (flex_ratio == 0)
521{
522/* Clear bit 16 (evidently the presence bit) */
523wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
524msr = rdmsr64(MSR_FLEX_RATIO);
525DBG("Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
526}
527else
528{
529if (bus_ratio_max > flex_ratio)
530{
531bus_ratio_max = flex_ratio;
532}
533}
534}
535
536if (bus_ratio_max)
537{
538fsbFrequency = (tscFrequency / bus_ratio_max);
539}
540
541//valv: Turbo Ratio Limit
542if ((intelCPU != 0x2e) && (intelCPU != 0x2f))
543{
544msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
545
546cpuFrequency = bus_ratio_max * fsbFrequency;
547max_ratio = bus_ratio_max * 10;
548}
549else
550{
551cpuFrequency = tscFrequency;
552}
553if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4))
554{
555max_ratio = atoi(newratio);
556max_ratio = (max_ratio * 10);
557if (len >= 3)
558{
559max_ratio = (max_ratio + 5);
560}
561
562verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
563
564// extreme overclockers may love 320 ;)
565if ((max_ratio >= min_ratio) && (max_ratio <= 320))
566{
567cpuFrequency = (fsbFrequency * max_ratio) / 10;
568if (len >= 3)
569{
570maxdiv = 1;
571}
572else
573{
574maxdiv = 0;
575}
576}
577else
578{
579max_ratio = (bus_ratio_max * 10);
580}
581}
582//valv: to be uncommented if Remarq.1 didn't stick
583/*if (bus_ratio_max > 0) bus_ratio = flex_ratio;*/
584p->CPU.MaxRatio = max_ratio;
585p->CPU.MinRatio = min_ratio;
586
587myfsb = fsbFrequency / 1000000;
588verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio/10); // Bungo: fixed wrong Bus-Ratio readout
589currcoef = bus_ratio_max;
590
591break;
592
593default:
594msr = rdmsr64(MSR_IA32_PERF_STATUS);
595DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
596currcoef = bitfield(msr, 12, 8); // Bungo: reverted to 2263 state because of wrong old CPUs freq. calculating
597/* Non-integer bus ratio for the max-multi*/
598maxdiv = bitfield(msr, 46, 46);
599/* Non-integer bus ratio for the current-multi (undocumented)*/
600currdiv = bitfield(msr, 14, 14);
601
602// This will always be model >= 3
603if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f))
604{
605/* On these models, maxcoef defines TSC freq */
606maxcoef = bitfield(msr, 44, 40);
607}
608else
609{
610/* On lower models, currcoef defines TSC freq */
611/* XXX */
612maxcoef = currcoef;
613}
614
615if (!currcoef)
616{
617currcoef = maxcoef;
618}
619
620if (maxcoef)
621{
622if (maxdiv)
623{
624fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
625}
626else
627{
628fsbFrequency = (tscFrequency / maxcoef);
629}
630
631if (currdiv)
632{
633cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
634}
635else
636{
637cpuFrequency = (fsbFrequency * currcoef);
638}
639
640DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
641}
642break;
643}
644}
645/* Mobile CPU */
646if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28))
647{
648p->CPU.Features |= CPU_FEATURE_MOBILE;
649}
650}
651else if ((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f))
652{
653switch(p->CPU.ExtFamily)
654{
655case 0x00: /* K8 */
656msr = rdmsr64(K8_FIDVID_STATUS);
657maxcoef = bitfield(msr, 21, 16) / 2 + 4;
658currcoef = bitfield(msr, 5, 0) / 2 + 4;
659break;
660
661case 0x01: /* K10 */
662msr = rdmsr64(K10_COFVID_STATUS);
663do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
664// EffFreq: effective frequency interface
665if (bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1)
666{
667//uint64_t mperf = measure_mperf_frequency();
668uint64_t aperf = measure_aperf_frequency();
669cpuFrequency = aperf;
670}
671// NOTE: tsc runs at the maccoeff (non turbo)
672//*not* at the turbo frequency.
673maxcoef = bitfield(msr, 54, 49) / 2 + 4;
674currcoef = bitfield(msr, 5, 0) + 0x10;
675currdiv = 2 << bitfield(msr, 8, 6);
676
677break;
678
679case 0x05: /* K14 */
680msr = rdmsr64(K10_COFVID_STATUS);
681currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
682currdiv = (bitfield(msr, 8, 4) + 1) << 2;
683currdiv += bitfield(msr, 3, 0);
684
685break;
686
687case 0x02: /* K11 */
688// not implimented
689break;
690}
691
692if (maxcoef)
693{
694if (currdiv)
695{
696if (!currcoef)
697{
698currcoef = maxcoef;
699}
700
701if (!cpuFrequency)
702{
703fsbFrequency = ((tscFrequency * currdiv) / currcoef);
704}
705else
706{
707fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
708}
709DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
710}
711else
712{
713if (!cpuFrequency)
714{
715fsbFrequency = (tscFrequency / maxcoef);
716}
717else
718{
719fsbFrequency = (cpuFrequency / maxcoef);
720}
721DBG("%d\n", currcoef);
722}
723}
724else if (currcoef)
725{
726if (currdiv)
727{
728fsbFrequency = ((tscFrequency * currdiv) / currcoef);
729DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
730}
731else
732{
733fsbFrequency = (tscFrequency / currcoef);
734DBG("%d\n", currcoef);
735}
736}
737if (!cpuFrequency) cpuFrequency = tscFrequency;
738}
739
740#if 0
741if (!fsbFrequency)
742{
743fsbFrequency = (DEFAULT_FSB * 1000);
744cpuFrequency = tscFrequency;
745DBG("0 ! using the default value for FSB !\n");
746}
747
748DBG("cpu freq = 0x%016llxn", timeRDTSC() * 20);
749
750#endif
751
752p->CPU.MaxCoef = maxcoef;
753p->CPU.MaxDiv = maxdiv;
754p->CPU.CurrCoef = currcoef;
755p->CPU.CurrDiv = currdiv;
756p->CPU.TSCFrequency = tscFrequency;
757p->CPU.FSBFrequency = fsbFrequency;
758p->CPU.CPUFrequency = cpuFrequency;
759
760// keep formatted with spaces instead of tabs
761DBG("\n---------------------------------------------\n");
762 DBG("------------------ CPU INFO -----------------\n");
763DBG("---------------------------------------------\n");
764DBG("Brand String: %s\n",p->CPU.BrandString); // Processor name (BIOS)
765DBG("Vendor: 0x%x\n",p->CPU.Vendor); // Vendor ex: GenuineIntel
766DBG("Family: 0x%x\n",p->CPU.Family); // Family ex: 6 (06h)
767DBG("ExtFamily: 0x%x\n",p->CPU.ExtFamily);
768DBG("Signature: %x\n",p->CPU.Signature); // CPUID signature
769DBG("Model: 0x%x\n",p->CPU.Model); // Model ex: 37 (025h)
770DBG("ExtModel: 0x%x\n",p->CPU.ExtModel);
771DBG("Stepping: 0x%x\n",p->CPU.Stepping); // Stepping ex: 5 (05h)
772DBG("MaxCoef: 0x%x\n",p->CPU.MaxCoef);
773DBG("CurrCoef: 0x%x\n",p->CPU.CurrCoef);
774DBG("MaxDiv: 0x%x\n",p->CPU.MaxDiv);
775DBG("CurrDiv: 0x%x\n",p->CPU.CurrDiv);
776DBG("TSCFreq: %dMHz\n",p->CPU.TSCFrequency / 1000000);
777DBG("FSBFreq: %dMHz\n",p->CPU.FSBFrequency / 1000000);
778DBG("CPUFreq: %dMHz\n",p->CPU.CPUFrequency / 1000000);
779DBG("Cores: %d\n",p->CPU.NoCores); // Cores
780DBG("Logical processor: %d\n",p->CPU.NoThreads); // Logical procesor
781DBG("Features: 0x%08x\n",p->CPU.Features);
782
783DBG("\n---------------------------------------------\n");
784#if DEBUG_CPU
785pause();
786#endif
787}
788

Archive Download this file

Revision: 2476