Chameleon

Chameleon Svn Source Tree

Root/trunk/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * timeRDTSC()
24 * This routine sets up PIT counter 2 to count down 1/20 of a second.
25 * It pauses until the value is latched in the counter
26 * and then reads the time stamp counter to return to the caller.
27 */
28uint64_t timeRDTSC(void)
29{
30intattempts = 0;
31uint64_t latchTime;
32uint64_tsaveTime,intermediate;
33unsigned int timerValue, lastValue;
34//boolean_tint_enabled;
35/*
36 * Table of correction factors to account for
37 * - timer counter quantization errors, and
38 * - undercounts 0..5
39 */
40#define SAMPLE_CLKS_EXACT(((double) CLKNUM) / 20.0)
41#define SAMPLE_CLKS_INT((int) CLKNUM / 20)
42#define SAMPLE_NSECS(2000000000LL)
43#define SAMPLE_MULTIPLIER(((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
44#define ROUND64(x)((uint64_t)((x) + 0.5))
45uint64_tscale[6] = {
46ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
47ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
48ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
49ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
50ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
51ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
52};
53
54//int_enabled = ml_set_interrupts_enabled(FALSE);
55
56restart:
57if (attempts >= 9) // increase to up to 9 attempts.
58{
59 // This will flash-reboot. TODO: Use tscPanic instead.
60printf("Timestamp counter calibation failed with %d attempts\n", attempts);
61}
62attempts++;
63enable_PIT2();// turn on PIT2
64set_PIT2(0);// reset timer 2 to be zero
65latchTime = rdtsc64();// get the time stamp to time
66latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
67set_PIT2(SAMPLE_CLKS_INT);// set up the timer for (almost) 1/20th a second
68saveTime = rdtsc64();// now time how long a 20th a second is...
69get_PIT2(&lastValue);
70get_PIT2(&lastValue);// read twice, first value may be unreliable
71do {
72intermediate = get_PIT2(&timerValue);
73if (timerValue > lastValue)
74{
75// Timer wrapped
76set_PIT2(0);
77disable_PIT2();
78goto restart;
79}
80lastValue = timerValue;
81} while (timerValue > 5);
82printf("timerValue %d\n",timerValue);
83printf("intermediate 0x%016llX\n",intermediate);
84printf("saveTime 0x%016llX\n",saveTime);
85
86intermediate -= saveTime;// raw count for about 1/20 second
87intermediate *= scale[timerValue];// rescale measured time spent
88intermediate /= SAMPLE_NSECS;// so its exactly 1/20 a second
89intermediate += latchTime;// add on our save fudge
90
91set_PIT2(0);// reset timer 2 to be zero
92disable_PIT2();// turn off PIT 2
93
94//ml_set_interrupts_enabled(int_enabled);
95return intermediate;
96}
97
98/*
99 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
100 */
101static uint64_t measure_tsc_frequency(void)
102{
103uint64_t tscStart;
104uint64_t tscEnd;
105uint64_t tscDelta = 0xffffffffffffffffULL;
106unsigned long pollCount;
107uint64_t retval = 0;
108int i;
109
110/* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
111 * counter 2. We run this loop 3 times to make sure the cache
112 * is hot and we take the minimum delta from all of the runs.
113 * That is to say that we're biased towards measuring the minimum
114 * number of TSC ticks that occur while waiting for the timer to
115 * expire. That theoretically helps avoid inconsistencies when
116 * running under a VM if the TSC is not virtualized and the host
117 * steals time. The TSC is normally virtualized for VMware.
118 */
119for(i = 0; i < 10; ++i)
120{
121enable_PIT2();
122set_PIT2_mode0(CALIBRATE_LATCH);
123tscStart = rdtsc64();
124pollCount = poll_PIT2_gate();
125tscEnd = rdtsc64();
126/* The poll loop must have run at least a few times for accuracy */
127if (pollCount <= 1)
128{
129continue;
130}
131/* The TSC must increment at LEAST once every millisecond.
132 * We should have waited exactly 30 msec so the TSC delta should
133 * be >= 30. Anything less and the processor is way too slow.
134 */
135if ((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
136{
137continue;
138}
139// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
140if ( (tscEnd - tscStart) < tscDelta )
141{
142tscDelta = tscEnd - tscStart;
143}
144}
145/* tscDelta is now the least number of TSC ticks the processor made in
146 * a timespan of 0.03 s (e.g. 30 milliseconds)
147 * Linux thus divides by 30 which gives the answer in kiloHertz because
148 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
149 * Hz so we need to convert our milliseconds to seconds. Since we're
150 * dividing by the milliseconds, we simply multiply by 1000.
151 */
152
153/* Unlike linux, we're not limited to 32-bit, but we do need to take care
154 * that we're going to multiply by 1000 first so we do need at least some
155 * arithmetic headroom. For now, 32-bit should be enough.
156 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
157 */
158if (tscDelta > (1ULL<<32))
159{
160retval = 0;
161}
162else
163{
164retval = tscDelta * 1000 / 30;
165}
166disable_PIT2();
167return retval;
168}
169
170/*
171 * Original comment/code:
172 * "DFE: Measures the Max Performance Frequency in Hz (64-bit)"
173 *
174 * Measures the Actual Performance Frequency in Hz (64-bit)
175 * (just a naming change, mperf --> aperf )
176 */
177static uint64_t measure_aperf_frequency(void)
178{
179uint64_t aperfStart;
180uint64_t aperfEnd;
181uint64_t aperfDelta = 0xffffffffffffffffULL;
182unsigned long pollCount;
183uint64_t retval = 0;
184int i;
185
186/* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
187 * counter 2. We run this loop 3 times to make sure the cache
188 * is hot and we take the minimum delta from all of the runs.
189 * That is to say that we're biased towards measuring the minimum
190 * number of APERF ticks that occur while waiting for the timer to
191 * expire.
192 */
193for(i = 0; i < 10; ++i)
194{
195enable_PIT2();
196set_PIT2_mode0(CALIBRATE_LATCH);
197aperfStart = rdmsr64(MSR_AMD_APERF);
198pollCount = poll_PIT2_gate();
199aperfEnd = rdmsr64(MSR_AMD_APERF);
200/* The poll loop must have run at least a few times for accuracy */
201if (pollCount <= 1)
202{
203continue;
204}
205/* The TSC must increment at LEAST once every millisecond.
206 * We should have waited exactly 30 msec so the APERF delta should
207 * be >= 30. Anything less and the processor is way too slow.
208 */
209if ((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC)
210{
211continue;
212}
213// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
214if ( (aperfEnd - aperfStart) < aperfDelta )
215{
216aperfDelta = aperfEnd - aperfStart;
217}
218}
219/* mperfDelta is now the least number of MPERF ticks the processor made in
220 * a timespan of 0.03 s (e.g. 30 milliseconds)
221 */
222
223if (aperfDelta > (1ULL<<32))
224{
225retval = 0;
226}
227else
228{
229retval = aperfDelta * 1000 / 30;
230}
231disable_PIT2();
232return retval;
233}
234
235/*
236 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
237 * - multi. is read from a specific MSR. In the case of Intel, there is:
238 * a max multi. (used to calculate the FSB freq.),
239 * and a current multi. (used to calculate the CPU freq.)
240 * - fsbFrequency = tscFrequency / multi
241 * - cpuFrequency = fsbFrequency * multi
242 */
243void scan_cpu(PlatformInfo_t *p)
244{
245uint64_ttscFrequency= 0;
246uint64_tfsbFrequency= 0;
247uint64_tcpuFrequency= 0;
248uint64_tmsr= 0;
249uint64_tflex_ratio= 0;
250
251uint32_tmax_ratio= 0;
252uint32_tmin_ratio= 0;
253uint32_treg[4];
254
255uint8_tbus_ratio_max= 0;
256uint8_tbus_ratio_min= 0;
257uint8_tcurrdiv= 0;
258uint8_tcurrcoef= 0;
259uint8_tmaxdiv= 0;
260uint8_tmaxcoef= 0;
261
262const char*newratio;
263charstr[128];
264
265intlen= 0;
266intmyfsb= 0;
267
268/* get cpuid values */
269do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
270do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
271
272do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
273do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
274do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
275
276do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
277if (p->CPU.CPUID[CPUID_0][0] >= 0x5)
278{
279do_cpuid(5, p->CPU.CPUID[CPUID_5]);
280}
281if (p->CPU.CPUID[CPUID_0][0] >= 6)
282{
283do_cpuid(6, p->CPU.CPUID[CPUID_6]);
284}
285if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8)
286{
287do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
288do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
289}
290else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1)
291{
292do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
293}
294
295// #if DEBUG_CPU
296{
297inti;
298DBG("CPUID Raw Values:\n");
299for (i = 0; i < CPUID_MAX; i++) {
300DBG("%02d: %08x-%08x-%08x-%08x\n", i,
301 p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
302 p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
303}
304}
305// #endif
306
307/*
308 EAX (Intel):
309 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
310 +--------+----------------+--------+----+----+--------+--------+--------+
311 |########|Extended family |Extmodel|####|type|familyid| model |stepping|
312 +--------+----------------+--------+----+----+--------+--------+--------+
313
314 EAX (AMD):
315 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
316 +--------+----------------+--------+----+----+--------+--------+--------+
317 |########|Extended family |Extmodel|####|####|familyid| model |stepping|
318 +--------+----------------+--------+----+----+--------+--------+--------+
319*/
320
321p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
322p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
323p->CPU.Stepping= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);// stepping = cpu_feat_eax & 0xF;
324p->CPU.Model= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);// model = (cpu_feat_eax >> 4) & 0xF;
325p->CPU.Family= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);// family = (cpu_feat_eax >> 8) & 0xF;
326//p->CPU.Type= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 13, 12);// type = (cpu_feat_eax >> 12) & 0x3;
327p->CPU.ExtModel= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);// ext_model = (cpu_feat_eax >> 16) & 0xF;
328p->CPU.ExtFamily= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);// ext_family = (cpu_feat_eax >> 20) & 0xFF;
329
330p->CPU.Model += (p->CPU.ExtModel << 4);
331
332if (p->CPU.Vendor == CPUID_VENDOR_INTEL &&
333p->CPU.Family == 0x06 &&
334p->CPU.Model >= CPUID_MODEL_NEHALEM &&
335p->CPU.Model != CPUID_MODEL_ATOM// MSR is *NOT* available on the Intel Atom CPU
336)
337{
338/*
339 * Find the number of enabled cores and threads
340 * (which determines whether SMT/Hyperthreading is active).
341 */
342switch (p->CPU.Model)
343{
344case CPUID_MODEL_NEHALEM:
345case CPUID_MODEL_FIELDS:
346case CPUID_MODEL_DALES:
347case CPUID_MODEL_NEHALEM_EX:
348case CPUID_MODEL_JAKETOWN:
349case CPUID_MODEL_SANDYBRIDGE:
350case CPUID_MODEL_IVYBRIDGE:
351case CPUID_MODEL_HASWELL:
352case CPUID_MODEL_HASWELL_SVR:
353//case CPUID_MODEL_HASWELL_H:
354case CPUID_MODEL_HASWELL_ULT:
355case CPUID_MODEL_CRYSTALWELL:
356msr = rdmsr64(MSR_CORE_THREAD_COUNT);
357p->CPU.NoCores= (uint8_t)bitfield((uint32_t)msr, 31, 16);
358p->CPU.NoThreads= (uint8_t)bitfield((uint32_t)msr, 15, 0);
359break;
360
361case CPUID_MODEL_DALES_32NM:
362case CPUID_MODEL_WESTMERE:
363case CPUID_MODEL_WESTMERE_EX:
364msr = rdmsr64(MSR_CORE_THREAD_COUNT);
365p->CPU.NoCores= (uint8_t)bitfield((uint32_t)msr, 19, 16);
366p->CPU.NoThreads= (uint8_t)bitfield((uint32_t)msr, 15, 0);
367break;
368
369default:
370p->CPU.NoCores = bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
371p->CPU.NoThreads = (uint8_t)(p->CPU.LogicalPerPackage & 0xff);
372//workaround for N270. I don't know why it detected wrong
373if ((p->CPU.Model == CPUID_MODEL_ATOM) && (p->CPU.Stepping == 2))
374{
375p->CPU.NoCores = 1;
376}
377break;
378
379} // end switch
380
381}
382else if (p->CPU.Vendor == CPUID_VENDOR_AMD)
383{
384p->CPU.NoThreads= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
385p->CPU.NoCores= (uint8_t)bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
386}
387else
388{
389// Use previous method for Cores and Threads
390p->CPU.NoThreads= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
391p->CPU.NoCores= (uint8_t)bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
392}
393
394/* get BrandString (if supported) */
395/* Copyright: from Apple's XNU cpuid.c */
396if (p->CPU.CPUID[CPUID_80][0] > 0x80000004)
397{
398char *s;
399bzero(str, 128);
400/*
401 * The BrandString 48 bytes (max), guaranteed to
402 * be NULL terminated.
403 */
404do_cpuid(0x80000002, reg);
405memcpy(&str[0], (char *)reg, 16);
406do_cpuid(0x80000003, reg);
407memcpy(&str[16], (char *)reg, 16);
408do_cpuid(0x80000004, reg);
409memcpy(&str[32], (char *)reg, 16);
410for (s = str; *s != '\0'; s++)
411{
412if (*s != ' ')
413{
414break;
415}
416}
417strlcpy(p->CPU.BrandString, s, 48);
418
419if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), (unsigned)strlen(CPU_STRING_UNKNOWN) + 1)))
420{
421/*
422 * This string means we have a firmware-programmable brand string,
423 * and the firmware couldn't figure out what sort of CPU we have.
424 */
425p->CPU.BrandString[0] = '\0';
426}
427p->CPU.BrandString[47] = '\0';
428//DBG("Brandstring = %s\n", p->CPU.BrandString);
429}
430
431/* setup features */
432if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0)
433{
434p->CPU.Features |= CPU_FEATURE_MMX;
435}
436
437if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0)
438{
439p->CPU.Features |= CPU_FEATURE_SSE;
440}
441
442if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0)
443{
444p->CPU.Features |= CPU_FEATURE_SSE2;
445}
446
447if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0)
448{
449p->CPU.Features |= CPU_FEATURE_SSE3;
450}
451
452if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0)
453{
454p->CPU.Features |= CPU_FEATURE_SSE41;
455}
456
457if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0)
458{
459p->CPU.Features |= CPU_FEATURE_SSE42;
460}
461
462if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0)
463{
464p->CPU.Features |= CPU_FEATURE_EM64T;
465}
466
467if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0)
468{
469p->CPU.Features |= CPU_FEATURE_MSR;
470}
471
472//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
473
474if (p->CPU.NoThreads > p->CPU.NoCores)
475{
476p->CPU.Features |= CPU_FEATURE_HTT;
477}
478
479tscFrequency = measure_tsc_frequency();
480DBG("cpu freq classic = 0x%016llx\n", tscFrequency);
481/* if usual method failed */
482if ( tscFrequency < 1000 )//TEST
483{
484tscFrequency = timeRDTSC() * 20;//measure_tsc_frequency();
485// DBG("cpu freq timeRDTSC = 0x%016llx\n", tscFrequency);
486}
487else
488{
489// DBG("cpu freq timeRDTSC = 0x%016llxn", timeRDTSC() * 20);
490}
491
492fsbFrequency = 0;
493cpuFrequency = 0;
494
495if (p->CPU.Vendor == CPUID_VENDOR_INTEL && ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03)))
496{
497int intelCPU = p->CPU.Model;
498if (p->CPU.Family == 0x06)
499{
500/* Nehalem CPU model */
501switch (p->CPU.Model)
502{
503case CPUID_MODEL_NEHALEM:
504case CPUID_MODEL_FIELDS:
505case CPUID_MODEL_DALES:
506case CPUID_MODEL_DALES_32NM:
507case CPUID_MODEL_WESTMERE:
508case CPUID_MODEL_NEHALEM_EX:
509case CPUID_MODEL_WESTMERE_EX:
510/* --------------------------------------------------------- */
511case CPUID_MODEL_SANDYBRIDGE:
512case CPUID_MODEL_JAKETOWN:
513case CPUID_MODEL_IVYBRIDGE_XEON:
514case CPUID_MODEL_IVYBRIDGE:
515case CPUID_MODEL_HASWELL:
516case CPUID_MODEL_HASWELL_SVR:
517
518case CPUID_MODEL_HASWELL_ULT:
519case CPUID_MODEL_CRYSTALWELL:
520/* --------------------------------------------------------- */
521msr = rdmsr64(MSR_PLATFORM_INFO);
522DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
523bus_ratio_max = bitfield(msr, 15, 8);
524bus_ratio_min = bitfield(msr, 47, 40); //valv: not sure about this one (Remarq.1)
525msr = rdmsr64(MSR_FLEX_RATIO);
526DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
527if (bitfield(msr, 16, 16))
528{
529flex_ratio = bitfield(msr, 15, 8);
530// bcc9: at least on the gigabyte h67ma-ud2h,
531// where the cpu multipler can't be changed to
532// allow overclocking, the flex_ratio msr has unexpected (to OSX)
533// contents.These contents cause mach_kernel to
534// fail to compute the bus ratio correctly, instead
535// causing the system to crash since tscGranularity
536// is inadvertently set to 0.
537
538if (flex_ratio == 0)
539{
540// Clear bit 16 (evidently the presence bit)
541wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
542msr = rdmsr64(MSR_FLEX_RATIO);
543DBG("CPU: Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
544}
545else
546{
547if (bus_ratio_max > flex_ratio)
548{
549bus_ratio_max = flex_ratio;
550}
551}
552}
553
554if (bus_ratio_max)
555{
556fsbFrequency = (tscFrequency / bus_ratio_max);
557}
558
559//valv: Turbo Ratio Limit
560if ((intelCPU != 0x2e) && (intelCPU != 0x2f))
561{
562msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
563
564cpuFrequency = bus_ratio_max * fsbFrequency;
565max_ratio = bus_ratio_max * 10;
566}
567else
568{
569cpuFrequency = tscFrequency;
570}
571if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4))
572{
573max_ratio = atoi(newratio);
574max_ratio = (max_ratio * 10);
575if (len >= 3)
576{
577max_ratio = (max_ratio + 5);
578}
579
580verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
581
582// extreme overclockers may love 320 ;)
583if ((max_ratio >= min_ratio) && (max_ratio <= 320))
584{
585cpuFrequency = (fsbFrequency * max_ratio) / 10;
586if (len >= 3)
587{
588maxdiv = 1;
589}
590else
591{
592maxdiv = 0;
593}
594}
595else
596{
597max_ratio = (bus_ratio_max * 10);
598}
599}
600//valv: to be uncommented if Remarq.1 didn't stick
601//if (bus_ratio_max > 0) bus_ratio = flex_ratio;
602p->CPU.MaxRatio = max_ratio;
603p->CPU.MinRatio = min_ratio;
604
605myfsb = fsbFrequency / 1000000;
606verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio/10); // Bungo: fixed wrong Bus-Ratio readout
607currcoef = bus_ratio_max;
608
609break;
610
611default:
612msr = rdmsr64(MSR_IA32_PERF_STATUS);
613DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
614currcoef = bitfield(msr, 12, 8); // Bungo: reverted to 2263 state because of wrong old CPUs freq. calculating
615// Non-integer bus ratio for the max-multi
616maxdiv = bitfield(msr, 46, 46);
617// Non-integer bus ratio for the current-multi (undocumented)
618currdiv = bitfield(msr, 14, 14);
619
620// This will always be model >= 3
621if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f))
622{
623/* On these models, maxcoef defines TSC freq */
624maxcoef = bitfield(msr, 44, 40);
625}
626else
627{
628// On lower models, currcoef defines TSC freq
629// XXX
630maxcoef = currcoef;
631}
632
633if (!currcoef)
634{
635currcoef = maxcoef;
636}
637
638if (maxcoef)
639{
640if (maxdiv)
641{
642fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
643}
644else
645{
646fsbFrequency = (tscFrequency / maxcoef);
647}
648
649if (currdiv)
650{
651cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
652}
653else
654{
655cpuFrequency = (fsbFrequency * currcoef);
656}
657
658DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
659}
660break;
661}
662}
663// Mobile CPU
664if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28))
665{
666p->CPU.Features |= CPU_FEATURE_MOBILE;
667}
668}
669else if ((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f))
670{
671switch(p->CPU.ExtFamily)
672{
673case 0x00: //* K8 *//
674msr = rdmsr64(K8_FIDVID_STATUS);
675maxcoef = bitfield(msr, 21, 16) / 2 + 4;
676currcoef = bitfield(msr, 5, 0) / 2 + 4;
677break;
678
679case 0x01: //* K10 *//
680msr = rdmsr64(K10_COFVID_STATUS);
681do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
682// EffFreq: effective frequency interface
683if (bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1)
684{
685//uint64_t mperf = measure_mperf_frequency();
686uint64_t aperf = measure_aperf_frequency();
687cpuFrequency = aperf;
688}
689// NOTE: tsc runs at the maccoeff (non turbo)
690//*not* at the turbo frequency.
691maxcoef = bitfield(msr, 54, 49) / 2 + 4;
692currcoef = bitfield(msr, 5, 0) + 0x10;
693currdiv = 2 << bitfield(msr, 8, 6);
694
695break;
696
697case 0x05: //* K14 *//
698msr = rdmsr64(K10_COFVID_STATUS);
699currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
700currdiv = (bitfield(msr, 8, 4) + 1) << 2;
701currdiv += bitfield(msr, 3, 0);
702
703break;
704
705case 0x02: //* K11 *//
706// not implimented
707break;
708}
709
710if (maxcoef)
711{
712if (currdiv)
713{
714if (!currcoef)
715{
716currcoef = maxcoef;
717}
718
719if (!cpuFrequency)
720{
721fsbFrequency = ((tscFrequency * currdiv) / currcoef);
722}
723else
724{
725fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
726}
727DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
728}
729else
730{
731if (!cpuFrequency)
732{
733fsbFrequency = (tscFrequency / maxcoef);
734}
735else
736{
737fsbFrequency = (cpuFrequency / maxcoef);
738}
739DBG("%d\n", currcoef);
740}
741}
742else if (currcoef)
743{
744if (currdiv)
745{
746fsbFrequency = ((tscFrequency * currdiv) / currcoef);
747DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
748}
749else
750{
751fsbFrequency = (tscFrequency / currcoef);
752DBG("%d\n", currcoef);
753}
754}
755if (!cpuFrequency) cpuFrequency = tscFrequency;
756}
757
758#if 0
759if (!fsbFrequency)
760{
761fsbFrequency = (DEFAULT_FSB * 1000);
762DBG("CPU: fsbFrequency = 0! using the default value for FSB!\n");
763cpuFrequency = tscFrequency;
764}
765
766DBG("cpu freq = 0x%016llxn", timeRDTSC() * 20);
767
768#endif
769
770p->CPU.MaxCoef = maxcoef;
771p->CPU.MaxDiv = maxdiv;
772p->CPU.CurrCoef = currcoef;
773p->CPU.CurrDiv = currdiv;
774p->CPU.TSCFrequency = tscFrequency;
775p->CPU.FSBFrequency = fsbFrequency;
776p->CPU.CPUFrequency = cpuFrequency;
777
778// keep formatted with spaces instead of tabs
779DBG("\n---------------------------------------------\n");
780 DBG("------------------ CPU INFO -----------------\n");
781DBG("---------------------------------------------\n");
782DBG("Brand String: %s\n",p->CPU.BrandString);// Processor name (BIOS)
783DBG("Vendor: 0x%x\n",p->CPU.Vendor);// Vendor ex: GenuineIntel
784DBG("Family: 0x%x\n",p->CPU.Family);// Family ex: 6 (06h)
785DBG("ExtFamily: 0x%x\n",p->CPU.ExtFamily);
786DBG("Signature: %x\n",p->CPU.Signature);// CPUID signature
787DBG("Model: 0x%x\n",p->CPU.Model);// Model ex: 37 (025h)
788DBG("ExtModel: 0x%x\n",p->CPU.ExtModel);
789DBG("Stepping: 0x%x\n",p->CPU.Stepping);// Stepping ex: 5 (05h)
790DBG("MaxCoef: 0x%x\n",p->CPU.MaxCoef);
791DBG("CurrCoef: 0x%x\n",p->CPU.CurrCoef);
792DBG("MaxDiv: 0x%x\n",p->CPU.MaxDiv);
793DBG("CurrDiv: 0x%x\n",p->CPU.CurrDiv);
794DBG("TSCFreq: %dMHz\n",p->CPU.TSCFrequency / 1000000);
795DBG("FSBFreq: %dMHz\n",p->CPU.FSBFrequency / 1000000);
796DBG("CPUFreq: %dMHz\n",p->CPU.CPUFrequency / 1000000);
797DBG("Cores: %d\n",p->CPU.NoCores);// Cores
798DBG("Logical processor: %d\n",p->CPU.NoThreads);// Logical procesor
799DBG("Features: 0x%08x\n",p->CPU.Features);
800
801DBG("\n---------------------------------------------\n");
802#if DEBUG_CPU
803pause();
804#endif
805}
806

Archive Download this file

Revision: 2573