Chameleon

Chameleon Svn Source Tree

Root/trunk/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9#include "bootstruct.h"
10#include "boot.h"
11
12#ifndef DEBUG_CPU
13#define DEBUG_CPU 0
14#endif
15
16#if DEBUG_CPU
17#define DBG(x...)printf(x)
18#else
19#define DBG(x...)msglog(x)
20#endif
21
22/*
23 * timeRDTSC()
24 * This routine sets up PIT counter 2 to count down 1/20 of a second.
25 * It pauses until the value is latched in the counter
26 * and then reads the time stamp counter to return to the caller.
27 */
28static uint64_t timeRDTSC(void)
29{
30intattempts = 0;
31uint64_t latchTime;
32uint64_tsaveTime,intermediate;
33unsigned int timerValue, lastValue;
34//boolean_tint_enabled;
35/*
36 * Table of correction factors to account for
37 * - timer counter quantization errors, and
38 * - undercounts 0..5
39 */
40#define SAMPLE_CLKS_EXACT(((double) CLKNUM) / 20.0)
41#define SAMPLE_CLKS_INT((int) CLKNUM / 20)
42#define SAMPLE_NSECS(2000000000LL)
43#define SAMPLE_MULTIPLIER(((double)SAMPLE_NSECS)*SAMPLE_CLKS_EXACT)
44#define ROUND64(x)((uint64_t)((x) + 0.5))
45uint64_tscale[6] = {
46ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-0)),
47ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-1)),
48ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-2)),
49ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-3)),
50ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-4)),
51ROUND64(SAMPLE_MULTIPLIER/(double)(SAMPLE_CLKS_INT-5))
52};
53
54//int_enabled = ml_set_interrupts_enabled(FALSE);
55
56restart:
57if (attempts >= 9) // increase to up to 9 attempts.
58{
59 // This will flash-reboot. TODO: Use tscPanic instead.
60printf("Timestamp counter calibation failed with %d attempts\n", attempts);
61}
62attempts++;
63enable_PIT2();// turn on PIT2
64set_PIT2(0);// reset timer 2 to be zero
65latchTime = rdtsc64();// get the time stamp to time
66latchTime = get_PIT2(&timerValue) - latchTime; // time how long this takes
67set_PIT2(SAMPLE_CLKS_INT);// set up the timer for (almost) 1/20th a second
68saveTime = rdtsc64();// now time how long a 20th a second is...
69get_PIT2(&lastValue);
70get_PIT2(&lastValue);// read twice, first value may be unreliable
71do {
72intermediate = get_PIT2(&timerValue);
73if (timerValue > lastValue)
74{
75// Timer wrapped
76set_PIT2(0);
77disable_PIT2();
78goto restart;
79}
80lastValue = timerValue;
81} while (timerValue > 5);
82printf("timerValue %d\n",timerValue);
83printf("intermediate 0x%016llX\n",intermediate);
84printf("saveTime 0x%016llX\n",saveTime);
85
86intermediate -= saveTime;// raw count for about 1/20 second
87intermediate *= scale[timerValue];// rescale measured time spent
88intermediate /= SAMPLE_NSECS;// so its exactly 1/20 a second
89intermediate += latchTime;// add on our save fudge
90
91set_PIT2(0);// reset timer 2 to be zero
92disable_PIT2();// turn off PIT 2
93
94//ml_set_interrupts_enabled(int_enabled);
95return intermediate;
96}
97
98/*
99 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
100 */
101static uint64_t measure_tsc_frequency(void)
102{
103uint64_t tscStart;
104uint64_t tscEnd;
105uint64_t tscDelta = 0xffffffffffffffffULL;
106unsigned long pollCount;
107uint64_t retval = 0;
108int i;
109
110/* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
111 * counter 2. We run this loop 3 times to make sure the cache
112 * is hot and we take the minimum delta from all of the runs.
113 * That is to say that we're biased towards measuring the minimum
114 * number of TSC ticks that occur while waiting for the timer to
115 * expire. That theoretically helps avoid inconsistencies when
116 * running under a VM if the TSC is not virtualized and the host
117 * steals time. The TSC is normally virtualized for VMware.
118 */
119for(i = 0; i < 10; ++i)
120{
121enable_PIT2();
122set_PIT2_mode0(CALIBRATE_LATCH);
123tscStart = rdtsc64();
124pollCount = poll_PIT2_gate();
125tscEnd = rdtsc64();
126/* The poll loop must have run at least a few times for accuracy */
127if (pollCount <= 1)
128{
129continue;
130}
131/* The TSC must increment at LEAST once every millisecond.
132 * We should have waited exactly 30 msec so the TSC delta should
133 * be >= 30. Anything less and the processor is way too slow.
134 */
135if ((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
136{
137continue;
138}
139// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
140if ( (tscEnd - tscStart) < tscDelta )
141{
142tscDelta = tscEnd - tscStart;
143}
144}
145/* tscDelta is now the least number of TSC ticks the processor made in
146 * a timespan of 0.03 s (e.g. 30 milliseconds)
147 * Linux thus divides by 30 which gives the answer in kiloHertz because
148 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
149 * Hz so we need to convert our milliseconds to seconds. Since we're
150 * dividing by the milliseconds, we simply multiply by 1000.
151 */
152
153/* Unlike linux, we're not limited to 32-bit, but we do need to take care
154 * that we're going to multiply by 1000 first so we do need at least some
155 * arithmetic headroom. For now, 32-bit should be enough.
156 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
157 */
158if (tscDelta > (1ULL<<32))
159{
160retval = 0;
161}
162else
163{
164retval = tscDelta * 1000 / 30;
165}
166disable_PIT2();
167return retval;
168}
169
170/*
171 * Original comment/code:
172 * "DFE: Measures the Max Performance Frequency in Hz (64-bit)"
173 *
174 * Measures the Actual Performance Frequency in Hz (64-bit)
175 * (just a naming change, mperf --> aperf )
176 */
177static uint64_t measure_aperf_frequency(void)
178{
179uint64_t aperfStart;
180uint64_t aperfEnd;
181uint64_t aperfDelta = 0xffffffffffffffffULL;
182unsigned long pollCount;
183uint64_t retval = 0;
184int i;
185
186/* Time how many APERF ticks elapse in 30 msec using the 8254 PIT
187 * counter 2. We run this loop 3 times to make sure the cache
188 * is hot and we take the minimum delta from all of the runs.
189 * That is to say that we're biased towards measuring the minimum
190 * number of APERF ticks that occur while waiting for the timer to
191 * expire.
192 */
193for(i = 0; i < 10; ++i)
194{
195enable_PIT2();
196set_PIT2_mode0(CALIBRATE_LATCH);
197aperfStart = rdmsr64(MSR_AMD_APERF);
198pollCount = poll_PIT2_gate();
199aperfEnd = rdmsr64(MSR_AMD_APERF);
200/* The poll loop must have run at least a few times for accuracy */
201if (pollCount <= 1)
202{
203continue;
204}
205/* The TSC must increment at LEAST once every millisecond.
206 * We should have waited exactly 30 msec so the APERF delta should
207 * be >= 30. Anything less and the processor is way too slow.
208 */
209if ((aperfEnd - aperfStart) <= CALIBRATE_TIME_MSEC)
210{
211continue;
212}
213// tscDelta = MIN(tscDelta, (tscEnd - tscStart))
214if ( (aperfEnd - aperfStart) < aperfDelta )
215{
216aperfDelta = aperfEnd - aperfStart;
217}
218}
219/* mperfDelta is now the least number of MPERF ticks the processor made in
220 * a timespan of 0.03 s (e.g. 30 milliseconds)
221 */
222
223if (aperfDelta > (1ULL<<32))
224{
225retval = 0;
226}
227else
228{
229retval = aperfDelta * 1000 / 30;
230}
231disable_PIT2();
232return retval;
233}
234
235/*
236 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
237 * - multi. is read from a specific MSR. In the case of Intel, there is:
238 * a max multi. (used to calculate the FSB freq.),
239 * and a current multi. (used to calculate the CPU freq.)
240 * - fsbFrequency = tscFrequency / multi
241 * - cpuFrequency = fsbFrequency * multi
242 */
243void scan_cpu(PlatformInfo_t *p)
244{
245uint64_ttscFrequency= 0;
246uint64_tfsbFrequency= 0;
247uint64_tcpuFrequency= 0;
248uint64_tmsr= 0;
249uint64_tflex_ratio= 0;
250
251uint32_tmax_ratio= 0;
252uint32_tmin_ratio= 0;
253uint32_treg[4]; //= {0, 0, 0, 0};
254uint32_tcores_per_package= 0;
255uint32_tlogical_per_package= 1;
256uint32_tthreads_per_core= 1;
257
258uint8_tbus_ratio_max= 0;
259uint8_tbus_ratio_min= 0;
260uint8_tcurrdiv= 0;
261uint8_tcurrcoef= 0;
262uint8_tmaxdiv= 0;
263uint8_tmaxcoef= 0;
264
265const char*newratio;
266charstr[128];
267char*s= 0;
268
269intlen= 0;
270intmyfsb= 0;
271inti= 0;
272
273/* get cpuid values */
274do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]); // MaxFn, Vendor
275p->CPU.Vendor = p->CPU.CPUID[CPUID_0][ebx];
276
277do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]); // Signature, stepping, features
278
279if ((p->CPU.Vendor == CPUID_VENDOR_INTEL) && ((bit(28) & p->CPU.CPUID[CPUID_1][edx]) != 0)) // Intel && HTT/Multicore
280{
281logical_per_package = bitfield(p->CPU.CPUID[CPUID_1][ebx], 23, 16);
282}
283
284do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]); // TLB/Cache/Prefetch
285
286do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]); // S/N
287
288/* Based on Apple's XNU cpuid.c - Deterministic cache parameters */
289if ((p->CPU.CPUID[CPUID_0][eax] > 3) && (p->CPU.CPUID[CPUID_0][eax] < 0x80000000))
290{
291for (i = 0; i < 0xFF; i++) // safe loop
292{
293do_cpuid2(0x00000004, i, reg); // AX=4: Fn, CX=i: cache index
294if (bitfield(reg[eax], 4, 0) == 0)
295{
296break;
297}
298//cores_per_package = bitfield(reg[eax], 31, 26) + 1;
299}
300}
301
302do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
303
304if (i > 0)
305{
306cores_per_package = bitfield(p->CPU.CPUID[CPUID_4][eax], 31, 26) + 1; // i = cache index
307threads_per_core = bitfield(p->CPU.CPUID[CPUID_4][eax], 25, 14) + 1;
308}
309
310if (cores_per_package == 0)
311{
312cores_per_package = 1;
313}
314
315if (p->CPU.CPUID[CPUID_0][0] >= 0x5) // Monitor/Mwait
316{
317do_cpuid(5, p->CPU.CPUID[CPUID_5]);
318}
319if (p->CPU.CPUID[CPUID_0][0] >= 6) // Thermal/Power
320{
321do_cpuid(6, p->CPU.CPUID[CPUID_6]);
322}
323
324do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
325if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 8)
326{
327do_cpuid(0x80000008, p->CPU.CPUID[CPUID_88]);
328do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
329}
330else if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1)
331{
332do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
333}
334
335/* http://www.flounder.com/cpuid_explorer2.htm
336 EAX (Intel):
337 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
338 +--------+----------------+--------+----+----+--------+--------+--------+
339 |########|Extended family |Extmodel|####|type|familyid| model |stepping|
340 +--------+----------------+--------+----+----+--------+--------+--------+
341
342 EAX (AMD):
343 31 28 27 20 19 16 1514 1312 11 8 7 4 3 0
344 +--------+----------------+--------+----+----+--------+--------+--------+
345 |########|Extended family |Extmodel|####|####|familyid| model |stepping|
346 +--------+----------------+--------+----+----+--------+--------+--------+
347*/
348
349p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
350p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
351p->CPU.Stepping= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);// stepping = cpu_feat_eax & 0xF;
352p->CPU.Model= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);// model = (cpu_feat_eax >> 4) & 0xF;
353p->CPU.Family= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);// family = (cpu_feat_eax >> 8) & 0xF;
354//p->CPU.Type= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 13, 12);// type = (cpu_feat_eax >> 12) & 0x3;
355p->CPU.ExtModel= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);// ext_model = (cpu_feat_eax >> 16) & 0xF;
356p->CPU.ExtFamily= (uint8_t)bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);// ext_family = (cpu_feat_eax >> 20) & 0xFF;
357
358p->CPU.Model += (p->CPU.ExtModel << 4);
359
360/* get BrandString (if supported) */
361/* Copyright: from Apple's XNU cpuid.c */
362if (p->CPU.CPUID[CPUID_80][0] > 0x80000004)
363{
364bzero(str, 128);
365/*
366 * The BrandString 48 bytes (max), guaranteed to
367 * be NULL terminated.
368 */
369do_cpuid(0x80000002, reg);
370memcpy(&str[0], (char *)reg, 16);
371do_cpuid(0x80000003, reg);
372memcpy(&str[16], (char *)reg, 16);
373do_cpuid(0x80000004, reg);
374memcpy(&str[32], (char *)reg, 16);
375for (s = str; *s != '\0'; s++)
376{
377if (*s != ' ')
378{
379break;
380}
381}
382strlcpy(p->CPU.BrandString, s, 48);
383
384if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, MIN(sizeof(p->CPU.BrandString), (unsigned)strlen(CPU_STRING_UNKNOWN) + 1)))
385{
386/*
387 * This string means we have a firmware-programmable brand string,
388 * and the firmware couldn't figure out what sort of CPU we have.
389 */
390p->CPU.BrandString[0] = '\0';
391}
392p->CPU.BrandString[47] = '\0';
393//DBG("Brandstring = %s\n", p->CPU.BrandString);
394}
395
396/*
397 * Find the number of enabled cores and threads
398 * (which determines whether SMT/Hyperthreading is active).
399 */
400switch (p->CPU.Vendor)
401{
402case CPUID_VENDOR_INTEL:
403switch (p->CPU.Model)
404{
405case CPUID_MODEL_NEHALEM:
406case CPUID_MODEL_FIELDS:
407case CPUID_MODEL_DALES:
408case CPUID_MODEL_NEHALEM_EX:
409case CPUID_MODEL_JAKETOWN:
410case CPUID_MODEL_SANDYBRIDGE:
411case CPUID_MODEL_IVYBRIDGE:
412
413case CPUID_MODEL_HASWELL:
414case CPUID_MODEL_HASWELL_SVR:
415//case CPUID_MODEL_HASWELL_H:
416case CPUID_MODEL_HASWELL_ULT:
417case CPUID_MODEL_CRYSTALWELL:
418//case CPUID_MODEL_:
419msr = rdmsr64(MSR_CORE_THREAD_COUNT);
420p->CPU.NoCores= (uint32_t)bitfield((uint32_t)msr, 31, 16);
421p->CPU.NoThreads= (uint32_t)bitfield((uint32_t)msr, 15, 0);
422break;
423
424case CPUID_MODEL_DALES_32NM:
425case CPUID_MODEL_WESTMERE:
426case CPUID_MODEL_WESTMERE_EX:
427msr = rdmsr64(MSR_CORE_THREAD_COUNT);
428p->CPU.NoCores= (uint32_t)bitfield((uint32_t)msr, 19, 16);
429p->CPU.NoThreads= (uint32_t)bitfield((uint32_t)msr, 15, 0);
430break;
431}
432
433if (p->CPU.NoCores == 0)
434{
435p->CPU.NoCores= cores_per_package;
436p->CPU.NoThreads= logical_per_package;
437}
438break;
439
440case CPUID_VENDOR_AMD:
441p->CPU.NoCores= (uint32_t)bitfield(p->CPU.CPUID[CPUID_88][2], 7, 0) + 1;
442p->CPU.NoThreads= (uint32_t)bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
443if (p->CPU.NoCores == 0)
444{
445p->CPU.NoCores = 1;
446}
447
448if (p->CPU.NoThreads < p->CPU.NoCores)
449{
450p->CPU.NoThreads = p->CPU.NoCores;
451}
452
453break;
454
455default:
456stop("Unsupported CPU detected! System halted.");
457}
458
459//workaround for N270. I don't know why it detected wrong
460// MSR is *NOT* available on the Intel Atom CPU
461if ((p->CPU.Model == CPUID_MODEL_ATOM) && (strstr(p->CPU.BrandString, "270")))
462{
463p->CPU.NoCores= 1;
464p->CPU.NoThreads= 2;
465}
466
467/* setup features */
468if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0)
469{
470p->CPU.Features |= CPU_FEATURE_MMX;
471}
472
473if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0)
474{
475p->CPU.Features |= CPU_FEATURE_SSE;
476}
477
478if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0)
479{
480p->CPU.Features |= CPU_FEATURE_SSE2;
481}
482
483if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0)
484{
485p->CPU.Features |= CPU_FEATURE_SSE3;
486}
487
488if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0)
489{
490p->CPU.Features |= CPU_FEATURE_SSE41;
491}
492
493if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0)
494{
495p->CPU.Features |= CPU_FEATURE_SSE42;
496}
497
498if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0)
499{
500p->CPU.Features |= CPU_FEATURE_EM64T;
501}
502
503if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0)
504{
505p->CPU.Features |= CPU_FEATURE_MSR;
506}
507
508if ((p->CPU.Vendor == CPUID_VENDOR_INTEL) && (p->CPU.NoThreads > p->CPU.NoCores))
509{
510p->CPU.Features |= CPU_FEATURE_HTT;
511}
512
513tscFrequency = measure_tsc_frequency();
514DBG("cpu freq classic = 0x%016llx\n", tscFrequency);
515/* if usual method failed */
516if ( tscFrequency < 1000 )//TEST
517{
518tscFrequency = timeRDTSC() * 20;//measure_tsc_frequency();
519// DBG("cpu freq timeRDTSC = 0x%016llx\n", tscFrequency);
520}
521else
522{
523// DBG("cpu freq timeRDTSC = 0x%016llxn", timeRDTSC() * 20);
524}
525
526fsbFrequency = 0;
527cpuFrequency = 0;
528
529if (p->CPU.Vendor == CPUID_VENDOR_INTEL && ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03)))
530{
531int intelCPU = p->CPU.Model;
532if (p->CPU.Family == 0x06)
533{
534/* Nehalem CPU model */
535switch (p->CPU.Model)
536{
537case CPUID_MODEL_NEHALEM:
538case CPUID_MODEL_FIELDS:
539case CPUID_MODEL_DALES:
540case CPUID_MODEL_DALES_32NM:
541case CPUID_MODEL_WESTMERE:
542case CPUID_MODEL_NEHALEM_EX:
543case CPUID_MODEL_WESTMERE_EX:
544/* --------------------------------------------------------- */
545case CPUID_MODEL_SANDYBRIDGE:
546case CPUID_MODEL_JAKETOWN:
547case CPUID_MODEL_IVYBRIDGE_XEON:
548case CPUID_MODEL_IVYBRIDGE:
549case CPUID_MODEL_HASWELL:
550case CPUID_MODEL_HASWELL_SVR:
551
552case CPUID_MODEL_HASWELL_ULT:
553case CPUID_MODEL_CRYSTALWELL:
554/* --------------------------------------------------------- */
555msr = rdmsr64(MSR_PLATFORM_INFO);
556DBG("msr(%d): platform_info %08x\n", __LINE__, bitfield(msr, 31, 0));
557bus_ratio_max = bitfield(msr, 15, 8);
558bus_ratio_min = bitfield(msr, 47, 40); //valv: not sure about this one (Remarq.1)
559msr = rdmsr64(MSR_FLEX_RATIO);
560DBG("msr(%d): flex_ratio %08x\n", __LINE__, bitfield(msr, 31, 0));
561if (bitfield(msr, 16, 16))
562{
563flex_ratio = bitfield(msr, 15, 8);
564// bcc9: at least on the gigabyte h67ma-ud2h,
565// where the cpu multipler can't be changed to
566// allow overclocking, the flex_ratio msr has unexpected (to OSX)
567// contents.These contents cause mach_kernel to
568// fail to compute the bus ratio correctly, instead
569// causing the system to crash since tscGranularity
570// is inadvertently set to 0.
571
572if (flex_ratio == 0)
573{
574// Clear bit 16 (evidently the presence bit)
575wrmsr64(MSR_FLEX_RATIO, (msr & 0xFFFFFFFFFFFEFFFFULL));
576msr = rdmsr64(MSR_FLEX_RATIO);
577DBG("CPU: Unusable flex ratio detected. Patched MSR now %08x\n", bitfield(msr, 31, 0));
578}
579else
580{
581if (bus_ratio_max > flex_ratio)
582{
583bus_ratio_max = flex_ratio;
584}
585}
586}
587
588if (bus_ratio_max)
589{
590fsbFrequency = (tscFrequency / bus_ratio_max);
591}
592
593//valv: Turbo Ratio Limit
594if ((intelCPU != 0x2e) && (intelCPU != 0x2f))
595{
596msr = rdmsr64(MSR_TURBO_RATIO_LIMIT);
597
598cpuFrequency = bus_ratio_max * fsbFrequency;
599max_ratio = bus_ratio_max * 10;
600}
601else
602{
603cpuFrequency = tscFrequency;
604}
605if ((getValueForKey(kbusratio, &newratio, &len, &bootInfo->chameleonConfig)) && (len <= 4))
606{
607max_ratio = atoi(newratio);
608max_ratio = (max_ratio * 10);
609if (len >= 3)
610{
611max_ratio = (max_ratio + 5);
612}
613
614verbose("Bus-Ratio: min=%d, max=%s\n", bus_ratio_min, newratio);
615
616// extreme overclockers may love 320 ;)
617if ((max_ratio >= min_ratio) && (max_ratio <= 320))
618{
619cpuFrequency = (fsbFrequency * max_ratio) / 10;
620if (len >= 3)
621{
622maxdiv = 1;
623}
624else
625{
626maxdiv = 0;
627}
628}
629else
630{
631max_ratio = (bus_ratio_max * 10);
632}
633}
634//valv: to be uncommented if Remarq.1 didn't stick
635//if (bus_ratio_max > 0) bus_ratio = flex_ratio;
636p->CPU.MaxRatio = max_ratio;
637p->CPU.MinRatio = min_ratio;
638
639myfsb = fsbFrequency / 1000000;
640verbose("Sticking with [BCLK: %dMhz, Bus-Ratio: %d]\n", myfsb, max_ratio/10); // Bungo: fixed wrong Bus-Ratio readout
641currcoef = bus_ratio_max;
642
643break;
644
645default:
646msr = rdmsr64(MSR_IA32_PERF_STATUS);
647DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, bitfield(msr, 31, 0));
648currcoef = bitfield(msr, 12, 8); // Bungo: reverted to 2263 state because of wrong old CPUs freq. calculating
649// Non-integer bus ratio for the max-multi
650maxdiv = bitfield(msr, 46, 46);
651// Non-integer bus ratio for the current-multi (undocumented)
652currdiv = bitfield(msr, 14, 14);
653
654// This will always be model >= 3
655if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f))
656{
657/* On these models, maxcoef defines TSC freq */
658maxcoef = bitfield(msr, 44, 40);
659}
660else
661{
662// On lower models, currcoef defines TSC freq
663// XXX
664maxcoef = currcoef;
665}
666
667if (!currcoef)
668{
669currcoef = maxcoef;
670}
671
672if (maxcoef)
673{
674if (maxdiv)
675{
676fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
677}
678else
679{
680fsbFrequency = (tscFrequency / maxcoef);
681}
682
683if (currdiv)
684{
685cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
686}
687else
688{
689cpuFrequency = (fsbFrequency * currcoef);
690}
691
692DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
693}
694break;
695}
696}
697// Mobile CPU
698if (rdmsr64(MSR_IA32_PLATFORM_ID) & (1<<28))
699{
700p->CPU.Features |= CPU_FEATURE_MOBILE;
701}
702}
703else if ((p->CPU.Vendor == CPUID_VENDOR_AMD) && (p->CPU.Family == 0x0f))
704{
705switch(p->CPU.ExtFamily)
706{
707case 0x00: //* K8 *//
708msr = rdmsr64(K8_FIDVID_STATUS);
709maxcoef = bitfield(msr, 21, 16) / 2 + 4;
710currcoef = bitfield(msr, 5, 0) / 2 + 4;
711break;
712
713case 0x01: //* K10 *//
714msr = rdmsr64(K10_COFVID_STATUS);
715do_cpuid2(0x00000006, 0, p->CPU.CPUID[CPUID_6]);
716// EffFreq: effective frequency interface
717if (bitfield(p->CPU.CPUID[CPUID_6][2], 0, 0) == 1)
718{
719//uint64_t mperf = measure_mperf_frequency();
720uint64_t aperf = measure_aperf_frequency();
721cpuFrequency = aperf;
722}
723// NOTE: tsc runs at the maccoeff (non turbo)
724//*not* at the turbo frequency.
725maxcoef = bitfield(msr, 54, 49) / 2 + 4;
726currcoef = bitfield(msr, 5, 0) + 0x10;
727currdiv = 2 << bitfield(msr, 8, 6);
728
729break;
730
731case 0x05: //* K14 *//
732msr = rdmsr64(K10_COFVID_STATUS);
733currcoef = (bitfield(msr, 54, 49) + 0x10) << 2;
734currdiv = (bitfield(msr, 8, 4) + 1) << 2;
735currdiv += bitfield(msr, 3, 0);
736
737break;
738
739case 0x02: //* K11 *//
740// not implimented
741break;
742}
743
744if (maxcoef)
745{
746if (currdiv)
747{
748if (!currcoef)
749{
750currcoef = maxcoef;
751}
752
753if (!cpuFrequency)
754{
755fsbFrequency = ((tscFrequency * currdiv) / currcoef);
756}
757else
758{
759fsbFrequency = ((cpuFrequency * currdiv) / currcoef);
760}
761DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
762}
763else
764{
765if (!cpuFrequency)
766{
767fsbFrequency = (tscFrequency / maxcoef);
768}
769else
770{
771fsbFrequency = (cpuFrequency / maxcoef);
772}
773DBG("%d\n", currcoef);
774}
775}
776else if (currcoef)
777{
778if (currdiv)
779{
780fsbFrequency = ((tscFrequency * currdiv) / currcoef);
781DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
782}
783else
784{
785fsbFrequency = (tscFrequency / currcoef);
786DBG("%d\n", currcoef);
787}
788}
789if (!cpuFrequency) cpuFrequency = tscFrequency;
790}
791
792#if 0
793if (!fsbFrequency)
794{
795fsbFrequency = (DEFAULT_FSB * 1000);
796DBG("CPU: fsbFrequency = 0! using the default value for FSB!\n");
797cpuFrequency = tscFrequency;
798}
799
800DBG("cpu freq = 0x%016llxn", timeRDTSC() * 20);
801
802#endif
803
804p->CPU.MaxCoef = maxcoef;
805p->CPU.MaxDiv = maxdiv;
806p->CPU.CurrCoef = currcoef;
807p->CPU.CurrDiv = currdiv;
808p->CPU.TSCFrequency = tscFrequency;
809p->CPU.FSBFrequency = fsbFrequency;
810p->CPU.CPUFrequency = cpuFrequency;
811
812// keep formatted with spaces instead of tabs
813DBG("\n------------------------------\n");
814 DBG("\tCPU INFO\n");
815DBG("------------------------------\n");
816
817DBG("CPUID Raw Values:\n");
818for (i = 0; i < CPUID_MAX; i++)
819{
820DBG("%02d: %08X-%08X-%08X-%08X\n", i, p->CPU.CPUID[i][eax], p->CPU.CPUID[i][ebx], p->CPU.CPUID[i][ecx], p->CPU.CPUID[i][edx]);
821}
822DBG("\n");
823DBG("Brand String: %s\n",p->CPU.BrandString);// Processor name (BIOS)
824DBG("Vendor: 0x%X\n",p->CPU.Vendor);// Vendor ex: GenuineIntel
825DBG("Family: 0x%X\n",p->CPU.Family);// Family ex: 6 (06h)
826DBG("ExtFamily: 0x%X\n",p->CPU.ExtFamily);
827DBG("Signature: 0x%08X\n",p->CPU.Signature);// CPUID signature
828/*switch (p->CPU.Type) {
829case PT_OEM:
830DBG("Processor type: Intel Original OEM Processor\n");
831break;
832case PT_OD:
833DBG("Processor type: Intel Over Drive Processor\n");
834break;
835case PT_DUAL:
836DBG("Processor type: Intel Dual Processor\n");
837break;
838case PT_RES:
839DBG("Processor type: Intel Reserved\n");
840break;
841default:
842break;
843}*/
844DBG("Model: 0x%X\n",p->CPU.Model);// Model ex: 37 (025h)
845DBG("ExtModel: 0x%X\n",p->CPU.ExtModel);
846DBG("Stepping: 0x%X\n",p->CPU.Stepping);// Stepping ex: 5 (05h)
847DBG("MaxCoef: %d\n",p->CPU.MaxCoef);
848DBG("CurrCoef: %d\n",p->CPU.CurrCoef);
849DBG("MaxDiv: %d\n",p->CPU.MaxDiv);
850DBG("CurrDiv: %d\n",p->CPU.CurrDiv);
851DBG("TSCFreq: %dMHz\n",p->CPU.TSCFrequency / 1000000);
852DBG("FSBFreq: %dMHz\n",p->CPU.FSBFrequency / 1000000);
853DBG("CPUFreq: %dMHz\n",p->CPU.CPUFrequency / 1000000);
854DBG("Cores: %d\n",p->CPU.NoCores);// Cores
855DBG("Logical processor: %d\n",p->CPU.NoThreads);// Logical procesor
856DBG("Features: 0x%08x\n",p->CPU.Features);
857
858DBG("\n---------------------------------------------\n");
859#if DEBUG_CPU
860pause();
861#endif
862}
863

Archive Download this file

Revision: 2576