Chameleon

Chameleon Svn Source Tree

Root/branches/azimutz/Chazileon/i386/libsaio/cpu.c

1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9
10#ifndef DEBUG_CPU
11#define DEBUG_CPU 0 //Azi:---
12#endif
13
14#if DEBUG_CPU
15#define DBG(x...)printf(x)
16#else
17#define DBG(x...)
18#endif
19
20/*
21 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer<---Azi:tsc
22 */
23static uint64_t measure_tsc_frequency(void)
24{
25 uint64_t tscStart;
26 uint64_t tscEnd;
27 uint64_t tscDelta = 0xffffffffffffffffULL;
28 unsigned long pollCount;
29 uint64_t retval = 0;
30 int i;
31
32 /* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
33 * counter 2. We run this loop 3 times to make sure the cache
34 * is hot and we take the minimum delta from all of the runs.
35 * That is to say that we're biased towards measuring the minimum
36 * number of TSC ticks that occur while waiting for the timer to
37 * expire. That theoretically helps avoid inconsistencies when
38 * running under a VM if the TSC is not virtualized and the host
39 * steals time. The TSC is normally virtualized for VMware.
40 */
41 for(i = 0; i < 10; ++i)
42 {
43 enable_PIT2();
44 set_PIT2_mode0(CALIBRATE_LATCH);
45 tscStart = rdtsc64();
46 pollCount = poll_PIT2_gate();
47 tscEnd = rdtsc64();
48 /* The poll loop must have run at least a few times for accuracy */
49 if(pollCount <= 1)
50 continue;
51 /* The TSC must increment at LEAST once every millisecond. We
52 * should have waited exactly 30 msec so the TSC delta should
53 * be >= 30. Anything less and the processor is way too slow.
54 */
55 if((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
56 continue;
57 // tscDelta = min(tscDelta, (tscEnd - tscStart))
58 if( (tscEnd - tscStart) < tscDelta )
59 tscDelta = tscEnd - tscStart;
60 }
61 /* tscDelta is now the least number of TSC ticks the processor made in
62 * a timespan of 0.03 s (e.g. 30 milliseconds)
63 * Linux thus divides by 30 which gives the answer in kiloHertz because
64 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
65 * Hz so we need to convert our milliseconds to seconds. Since we're
66 * dividing by the milliseconds, we simply multiply by 1000.
67 */
68
69 /* Unlike linux, we're not limited to 32-bit, but we do need to take care
70 * that we're going to multiply by 1000 first so we do need at least some
71 * arithmetic headroom. For now, 32-bit should be enough.
72 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
73 */
74 if(tscDelta > (1ULL<<32))
75 retval = 0;
76 else
77 {
78 retval = tscDelta * 1000 / 30;
79 }
80 disable_PIT2();
81 return retval;
82}
83
84/*
85 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
86 * - multi. is read from a specific MSR. In the case of Intel, there is:
87 * a max multi. (used to calculate the FSB freq.),
88 * and a current multi. (used to calculate the CPU freq.)
89 * - fsbFrequency = tscFrequency / multi<---Azi:fsb
90 * - cpuFrequency = fsbFrequency * multi
91 */
92
93void scan_cpu(PlatformInfo_t *p)
94{
95uint64_ttscFrequency, fsbFrequency, cpuFrequency;
96uint64_tmsr, flex_ratio;
97uint8_tmaxcoef, maxdiv, currcoef, currdiv;
98
99maxcoef = maxdiv = currcoef = currdiv = 0;
100
101/* get cpuid values */
102do_cpuid(0x00000000, p->CPU.CPUID[CPUID_0]);
103do_cpuid(0x00000001, p->CPU.CPUID[CPUID_1]);
104do_cpuid(0x00000002, p->CPU.CPUID[CPUID_2]);
105do_cpuid(0x00000003, p->CPU.CPUID[CPUID_3]);
106do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
107do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
108if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1) {
109do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
110}
111#if DEBUG_CPU
112{
113inti;
114printf("CPUID Raw Values:\n");
115for (i=0; i<CPUID_MAX; i++) {
116printf("%02d: %08x-%08x-%08x-%08x\n", i,
117p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
118p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
119}
120}
121#endif
122p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
123p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
124p->CPU.Stepping= bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);
125p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
126p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
127p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
128p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
129p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
130p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
131
132p->CPU.Model += (p->CPU.ExtModel << 4);
133
134/* get brand string (if supported) */
135/* Copyright: from Apple's XNU cpuid.c */
136if (p->CPU.CPUID[CPUID_80][0] > 0x80000004) {
137uint32_treg[4];
138 char str[128], *s;
139/*
140 * The brand string 48 bytes (max), guaranteed to
141 * be NUL terminated.
142 */
143do_cpuid(0x80000002, reg);
144bcopy((char *)reg, &str[0], 16);
145do_cpuid(0x80000003, reg);
146bcopy((char *)reg, &str[16], 16);
147do_cpuid(0x80000004, reg);
148bcopy((char *)reg, &str[32], 16);
149for (s = str; *s != '\0'; s++) {
150if (*s != ' ') break;
151}
152
153strlcpy(p->CPU.BrandString,s, sizeof(p->CPU.BrandString));
154
155if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, min(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1))) {
156 /*
157 * This string means we have a firmware-programmable brand string,
158 * and the firmware couldn't figure out what sort of CPU we have.
159 */
160 p->CPU.BrandString[0] = '\0';
161 }
162}
163
164/* setup features */
165if ((bit(23) & p->CPU.CPUID[CPUID_1][3]) != 0) {
166p->CPU.Features |= CPU_FEATURE_MMX;
167}
168if ((bit(25) & p->CPU.CPUID[CPUID_1][3]) != 0) {
169p->CPU.Features |= CPU_FEATURE_SSE;
170}
171if ((bit(26) & p->CPU.CPUID[CPUID_1][3]) != 0) {
172p->CPU.Features |= CPU_FEATURE_SSE2;
173}
174if ((bit(0) & p->CPU.CPUID[CPUID_1][2]) != 0) {
175p->CPU.Features |= CPU_FEATURE_SSE3;
176}
177if ((bit(19) & p->CPU.CPUID[CPUID_1][2]) != 0) {
178p->CPU.Features |= CPU_FEATURE_SSE41;
179}
180if ((bit(20) & p->CPU.CPUID[CPUID_1][2]) != 0) {
181p->CPU.Features |= CPU_FEATURE_SSE42;
182}
183if ((bit(29) & p->CPU.CPUID[CPUID_81][3]) != 0) {
184p->CPU.Features |= CPU_FEATURE_EM64T;
185}
186if ((bit(5) & p->CPU.CPUID[CPUID_1][3]) != 0) {
187p->CPU.Features |= CPU_FEATURE_MSR;
188}
189//if ((bit(28) & p->CPU.CPUID[CPUID_1][3]) != 0) {
190if (p->CPU.NoThreads > p->CPU.NoCores) {
191p->CPU.Features |= CPU_FEATURE_HTT;
192}
193
194tscFrequency = measure_tsc_frequency();
195fsbFrequency = 0;
196cpuFrequency = 0;
197
198if ((p->CPU.Vendor == 0x756E6547 /* Intel */) && ((p->CPU.Family == 0x06) || (p->CPU.Family == 0x0f/*Azi:fsb, my fam*/))) {
199if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) || (p->CPU.Family == 0x0f && p->CPU.Model >= 0x03/*Azi:fsb, my fam/model*/)) {
200/* Nehalem CPU model */
201if (p->CPU.Family == 0x06 && (p->CPU.Model == 0x1a || p->CPU.Model == 0x1e
202 || p->CPU.Model == 0x1f || p->CPU.Model == 0x25 || p->CPU.Model == 0x2c)) {
203msr = rdmsr64(MSR_PLATFORM_INFO);
204DBG("msr(%d): platform_info %08x\n", __LINE__, msr & 0xffffffff);
205currcoef = (msr >> 8) & 0xff;
206msr = rdmsr64(MSR_FLEX_RATIO);
207DBG("msr(%d): flex_ratio %08x\n", __LINE__, msr & 0xffffffff);
208if ((msr >> 16) & 0x01) {
209flex_ratio = (msr >> 8) & 0xff;
210if (currcoef > flex_ratio) {
211currcoef = flex_ratio;
212}
213}
214
215if (currcoef)
216{
217fsbFrequency = (tscFrequency / currcoef);
218}
219cpuFrequency = tscFrequency;
220}
221else
222{
223msr = rdmsr64(MSR_IA32_PERF_STATUS);
224DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, msr & 0xffffffff);
225currcoef = (msr >> 8) & 0x1f;
226/* Non-integer bus ratio for the max-multi*/
227maxdiv = (msr >> 46) & 0x01;
228/* Non-integer bus ratio for the current-multi (undocumented)*/
229currdiv = (msr >> 14) & 0x01;
230
231if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) || (p->CPU.Family == 0x0f)) // This will always be model >= 3
232{
233/* On these models, maxcoef defines TSC freq Azi:fsb mine */
234maxcoef = (msr >> 40) & 0x1f;
235}
236else
237{
238/* On lower models, currcoef defines TSC freq */
239/* XXX */
240maxcoef = currcoef;
241}
242
243if (maxcoef)
244{
245if (maxdiv)
246{
247fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
248}
249else
250{
251fsbFrequency = (tscFrequency / maxcoef);
252}
253
254if (currdiv)
255{
256cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
257}
258else
259{
260cpuFrequency = (fsbFrequency * currcoef);
261}
262DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
263}
264}
265}
266/* Mobile CPU ? */
267if (rdmsr64(0x17) & (1<<28)) {
268p->CPU.Features |= CPU_FEATURE_MOBILE;
269}
270}
271#if 0
272else if((p->CPU.Vendor == 0x68747541 /* AMD */) && (p->CPU.Family == 0x0f)) {
273if(p->CPU.ExtFamily == 0x00 /* K8 */) {
274msr = rdmsr64(K8_FIDVID_STATUS);
275currcoef = (msr & 0x3f) / 2 + 4;
276currdiv = (msr & 0x01) * 2;
277} else if(p->CPU.ExtFamily >= 0x01 /* K10+ */) {
278msr = rdmsr64(K10_COFVID_STATUS);
279if(p->CPU.ExtFamily == 0x01 /* K10 */)
280currcoef = (msr & 0x3f) + 0x10;
281else /* K11+ */
282currcoef = (msr & 0x3f) + 0x08;
283currdiv = (2 << ((msr >> 6) & 0x07));
284}
285
286if (currcoef) {
287if (currdiv) {
288fsbFrequency = ((tscFrequency * currdiv) / currcoef);
289DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
290} else {
291fsbFrequency = (tscFrequency / currcoef);
292DBG("%d\n", currcoef);
293}
294fsbFrequency = (tscFrequency / currcoef);
295cpuFrequency = tscFrequency;
296}
297}
298
299if (!fsbFrequency) {
300fsbFrequency = (DEFAULT_FSB * 1000);
301cpuFrequency = tscFrequency;
302DBG("0 ! using the default value for FSB !\n");
303}
304#endif
305
306p->CPU.MaxCoef = maxcoef;
307p->CPU.MaxDiv = maxdiv;
308p->CPU.CurrCoef = currcoef;
309p->CPU.CurrDiv = currdiv;
310p->CPU.TSCFrequency = tscFrequency;
311p->CPU.FSBFrequency = fsbFrequency;
312p->CPU.CPUFrequency = cpuFrequency;
313#if DEBUG_CPU
314DBG("CPU: Vendor/Model/ExtModel: 0x%x/0x%x/0x%x\n", p->CPU.Vendor, p->CPU.Model, p->CPU.ExtModel);
315DBG("CPU: Family/ExtFamily: 0x%x/0x%x\n", p->CPU.Family, p->CPU.ExtFamily);
316DBG("CPU: MaxCoef/CurrCoef: 0x%x/0x%x\n", p->CPU.MaxCoef, p->CPU.CurrCoef);
317DBG("CPU: MaxDiv/CurrDiv: 0x%x/0x%x\n", p->CPU.MaxDiv, p->CPU.CurrDiv);
318DBG("CPU: TSCFreq: %dMHz\n", p->CPU.TSCFrequency / 1000000);
319DBG("CPU: FSBFreq: %dMHz\n", p->CPU.FSBFrequency / 1000000);
320DBG("CPU: CPUFreq: %dMHz\n", p->CPU.CPUFrequency / 1000000);
321DBG("CPU: NoCores/NoThreads: %d/%d\n", p->CPU.NoCores, p->CPU.NoThreads);
322DBG("CPU: Features: 0x%08x\n", p->CPU.Features);
323pause();
324#endif
325}
326

Archive Download this file

Revision: 316