Chameleon

Chameleon Svn Source Tree

Root/branches/meklort/i386/libsaio/cpu.c

Source at commit 655 created 13 years 4 months ago.
By meklort, Modules update. removed hardcoding for dyld_stub_bunder in modules.c Added a subset of klibc for a more complete c library implimentation. Added a subset of uclibc++ for an initial c++ implimentation. Note: cout / cin / file io has been disabled. Also note that exceptions and rtti is disabled. Modified the helow world code foa small c++ test.
1/*
2 * Copyright 2008 Islam Ahmed Zaid. All rights reserved. <azismed@gmail.com>
3 * AsereBLN: 2009: cleanup and bugfix
4 */
5
6#include "libsaio.h"
7#include "platform.h"
8#include "cpu.h"
9
10#ifndef DEBUG_CPU
11#define DEBUG_CPU 0
12#endif
13
14#if DEBUG_CPU
15#define DBG(x...)printf(x)
16#else
17#define DBG(x...)msglog(x)
18#endif
19
20/*
21 * DFE: Measures the TSC frequency in Hz (64-bit) using the ACPI PM timer
22 */
23static uint64_t measure_tsc_frequency(void)
24{
25 uint64_t tscStart;
26 uint64_t tscEnd;
27 uint64_t tscDelta = 0xffffffffffffffffULL;
28 unsigned long pollCount;
29 uint64_t retval = 0;
30 int i;
31
32 /* Time how many TSC ticks elapse in 30 msec using the 8254 PIT
33 * counter 2. We run this loop 3 times to make sure the cache
34 * is hot and we take the minimum delta from all of the runs.
35 * That is to say that we're biased towards measuring the minimum
36 * number of TSC ticks that occur while waiting for the timer to
37 * expire. That theoretically helps avoid inconsistencies when
38 * running under a VM if the TSC is not virtualized and the host
39 * steals time. The TSC is normally virtualized for VMware.
40 */
41 for(i = 0; i < 10; ++i)
42 {
43 enable_PIT2();
44 set_PIT2_mode0(CALIBRATE_LATCH);
45 tscStart = rdtsc64();
46 pollCount = poll_PIT2_gate();
47 tscEnd = rdtsc64();
48 /* The poll loop must have run at least a few times for accuracy */
49 if(pollCount <= 1)
50 continue;
51 /* The TSC must increment at LEAST once every millisecond. We
52 * should have waited exactly 30 msec so the TSC delta should
53 * be >= 30. Anything less and the processor is way too slow.
54 */
55 if((tscEnd - tscStart) <= CALIBRATE_TIME_MSEC)
56 continue;
57 // tscDelta = min(tscDelta, (tscEnd - tscStart))
58 if( (tscEnd - tscStart) < tscDelta )
59 tscDelta = tscEnd - tscStart;
60 }
61 /* tscDelta is now the least number of TSC ticks the processor made in
62 * a timespan of 0.03 s (e.g. 30 milliseconds)
63 * Linux thus divides by 30 which gives the answer in kiloHertz because
64 * 1 / ms = kHz. But we're xnu and most of the rest of the code uses
65 * Hz so we need to convert our milliseconds to seconds. Since we're
66 * dividing by the milliseconds, we simply multiply by 1000.
67 */
68
69 /* Unlike linux, we're not limited to 32-bit, but we do need to take care
70 * that we're going to multiply by 1000 first so we do need at least some
71 * arithmetic headroom. For now, 32-bit should be enough.
72 * Also unlike Linux, our compiler can do 64-bit integer arithmetic.
73 */
74 if(tscDelta > (1ULL<<32))
75 retval = 0;
76 else
77 {
78 retval = tscDelta * 1000 / 30;
79 }
80 disable_PIT2();
81 return retval;
82}
83
84/*
85 * Calculates the FSB and CPU frequencies using specific MSRs for each CPU
86 * - multi. is read from a specific MSR. In the case of Intel, there is:
87 * a max multi. (used to calculate the FSB freq.),
88 * and a current multi. (used to calculate the CPU freq.)
89 * - fsbFrequency = tscFrequency / multi
90 * - cpuFrequency = fsbFrequency * multi
91 */
92
93void scan_cpu(PlatformInfo_t *p)
94{
95int i = 0;
96uint64_ttscFrequency, fsbFrequency, cpuFrequency;
97uint64_tmsr, flex_ratio;
98uint8_tmaxcoef, maxdiv, currcoef, currdiv;
99
100maxcoef = maxdiv = currcoef = currdiv = 0;
101
102
103// Rename CPU to GeniuneIntel
104//wrmsr64(MSR_VIA_FEAT_CONTROL2, 'GenuineI'/*'ntel'*/);
105
106
107/* get cpuid values */
108for( ; i <= 3; i++)
109{
110do_cpuid(i, p->CPU.CPUID[i]);
111}
112
113do_cpuid2(0x00000004, 0, p->CPU.CPUID[CPUID_4]);
114do_cpuid(0x80000000, p->CPU.CPUID[CPUID_80]);
115if ((p->CPU.CPUID[CPUID_80][0] & 0x0000000f) >= 1) {
116do_cpuid(0x80000001, p->CPU.CPUID[CPUID_81]);
117}
118#if DEBUG_CPU
119{
120inti;
121printf("CPUID Raw Values:\n");
122for (i=0; i<CPUID_MAX; i++) {
123printf("%02d: %08x-%08x-%08x-%08x\n", i,
124p->CPU.CPUID[i][0], p->CPU.CPUID[i][1],
125p->CPU.CPUID[i][2], p->CPU.CPUID[i][3]);
126}
127}
128#endif
129p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
130p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
131p->CPU.Stepping= bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);
132p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
133p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
134p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
135p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
136p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
137p->CPU.NoCores= bitfield(p->CPU.CPUID[CPUID_4][0], 31, 26) + 1;
138
139p->CPU.Model += (p->CPU.ExtModel << 4);
140
141/* get brand string (if supported) */
142/* Copyright: from Apple's XNU cpuid.c */
143if (p->CPU.CPUID[CPUID_80][0] > 0x80000004) {
144uint32_treg[4];
145 char str[128], *s;
146/*
147 * The brand string 48 bytes (max), guaranteed to
148 * be NUL terminated.
149 */
150do_cpuid(0x80000002, reg);
151bcopy((char *)reg, &str[0], 16);
152do_cpuid(0x80000003, reg);
153bcopy((char *)reg, &str[16], 16);
154do_cpuid(0x80000004, reg);
155bcopy((char *)reg, &str[32], 16);
156for (s = str; *s != '\0'; s++) {
157if (*s != ' ') break;
158}
159
160strlcpy(p->CPU.BrandString,s, sizeof(p->CPU.BrandString));
161
162if (!strncmp(p->CPU.BrandString, CPU_STRING_UNKNOWN, min(sizeof(p->CPU.BrandString), strlen(CPU_STRING_UNKNOWN) + 1))) {
163 /*
164 * This string means we have a firmware-programmable brand string,
165 * and the firmware couldn't figure out what sort of CPU we have.
166 */
167 p->CPU.BrandString[0] = '\0';
168 }
169}
170
171/* setup features */
172p->CPU.Features |= (CPU_FEATURE_MMX | CPU_FEATURE_SSE | CPU_FEATURE_SSE2 | CPU_FEATURE_MSR) & p->CPU.CPUID[CPUID_1][3];
173p->CPU.Features |= (CPU_FEATURE_SSE3 | CPU_FEATURE_SSE41 | CPU_FEATURE_SSE42) & p->CPU.CPUID[CPUID_1][2];
174p->CPU.Features |= (CPU_FEATURE_EM64T) & p->CPU.CPUID[CPUID_81][3];
175
176
177//if ((CPU_FEATURE_HTT & p->CPU.CPUID[CPUID_1][3]) != 0) {
178if (p->CPU.NoThreads > p->CPU.NoCores) {
179p->CPU.Features |= CPU_FEATURE_HTT;
180}
181
182
183tscFrequency = measure_tsc_frequency();
184fsbFrequency = 0;
185cpuFrequency = 0;
186
187if ((p->CPU.Vendor == 0x756E6547 /* Intel */) &&
188((p->CPU.Family == 0x06) ||
189 (p->CPU.Family == 0x0f)))
190{
191if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0c) ||
192(p->CPU.Family == 0x0f && p->CPU.Model >= 0x03))
193{
194/* Nehalem CPU model */
195if (p->CPU.Family == 0x06 && (p->CPU.Model == 0x1a || p->CPU.Model == 0x1e ||
196 p->CPU.Model == 0x1f || p->CPU.Model == 0x25 ||
197 p->CPU.Model == 0x2c))
198{
199msr = rdmsr64(MSR_PLATFORM_INFO);
200DBG("msr(%d): platform_info %08x\n", __LINE__, msr & 0xffffffff);
201currcoef = (msr >> 8) & 0xff;
202msr = rdmsr64(MSR_FLEX_RATIO);
203DBG("msr(%d): flex_ratio %08x\n", __LINE__, msr & 0xffffffff);
204if ((msr >> 16) & 0x01)
205{
206flex_ratio = (msr >> 8) & 0xff;
207if (currcoef > flex_ratio)
208{
209currcoef = flex_ratio;
210}
211}
212
213if (currcoef) {
214fsbFrequency = (tscFrequency / currcoef);
215}
216cpuFrequency = tscFrequency;
217}
218else
219{
220msr = rdmsr64(MSR_IA32_PERF_STATUS);
221DBG("msr(%d): ia32_perf_stat 0x%08x\n", __LINE__, msr & 0xffffffff);
222currcoef = (msr >> 8) & 0x1f;
223/* Non-integer bus ratio for the max-multi*/
224maxdiv = (msr >> 46) & 0x01;
225/* Non-integer bus ratio for the current-multi (undocumented)*/
226currdiv = (msr >> 14) & 0x01;
227
228if ((p->CPU.Family == 0x06 && p->CPU.Model >= 0x0e) ||
229(p->CPU.Family == 0x0f)) // This will always be model >= 3
230{
231/* On these models, maxcoef defines TSC freq */
232maxcoef = (msr >> 40) & 0x1f;
233}
234else
235{
236/* On lower models, currcoef defines TSC freq */
237/* XXX */
238maxcoef = currcoef;
239}
240
241if (maxcoef)
242{
243if (maxdiv)
244{
245fsbFrequency = ((tscFrequency * 2) / ((maxcoef * 2) + 1));
246}
247else
248{
249fsbFrequency = (tscFrequency / maxcoef);
250}
251
252if (currdiv)
253{
254cpuFrequency = (fsbFrequency * ((currcoef * 2) + 1) / 2);
255}
256else
257{
258cpuFrequency = (fsbFrequency * currcoef);
259}
260DBG("max: %d%s current: %d%s\n", maxcoef, maxdiv ? ".5" : "",currcoef, currdiv ? ".5" : "");
261}
262}
263}
264/* Mobile CPU ? */
265if (rdmsr64(0x17) & (1<<28))
266{
267p->CPU.Features |= CPU_FEATURE_MOBILE;
268}
269}
270#if 0
271else if((p->CPU.Vendor == 0x68747541 /* AMD */) && (p->CPU.Family == 0x0f))
272{
273if(p->CPU.ExtFamily == 0x00 /* K8 */)
274{
275msr = rdmsr64(K8_FIDVID_STATUS);
276currcoef = (msr & 0x3f) / 2 + 4;
277currdiv = (msr & 0x01) * 2;
278}
279else if(p->CPU.ExtFamily >= 0x01 /* K10+ */)
280{
281msr = rdmsr64(K10_COFVID_STATUS);
282if(p->CPU.ExtFamily == 0x01 /* K10 */)
283currcoef = (msr & 0x3f) + 0x10;
284else /* K11+ */
285currcoef = (msr & 0x3f) + 0x08;
286currdiv = (2 << ((msr >> 6) & 0x07));
287}
288
289if (currcoef)
290{
291if (currdiv)
292{
293fsbFrequency = ((tscFrequency * currdiv) / currcoef);
294DBG("%d.%d\n", currcoef / currdiv, ((currcoef % currdiv) * 100) / currdiv);
295}
296else
297{
298fsbFrequency = (tscFrequency / currcoef);
299DBG("%d\n", currcoef);
300}
301fsbFrequency = (tscFrequency / currcoef);
302cpuFrequency = tscFrequency;
303}
304}
305
306if (!fsbFrequency)
307{
308fsbFrequency = (DEFAULT_FSB * 1000);
309cpuFrequency = tscFrequency;
310DBG("0 ! using the default value for FSB !\n");
311}
312#endif
313else if(p->CPU.Vendor == 0x746e6543 && p->CPU.Family == 6)
314{
315switch (p->CPU.Model) {
316case CPU_VIA_NANO:
317// NOTE: TSC is constant, irrelevent of speed steping
318break;
319default:
320break;
321}
322
323msr = rdmsr64(MSR_NANO_FCR2);
324printf("MSR_IA32_EBL_CR_POWERON Returns 0x%X 0x%X\n", msr >> 32, msr & 0xffffffff);
325
326//msr = msr >> 32;
327msr |= VIA_ALTERNATIVE_VENDOR_BIT;
328//msr = msr << 32;
329
330printf("MSR_IA32_EBL_CR_POWERON Returns 0x%X 0x%X\n", msr >> 32, msr & 0xffffffff);
331wrmsr64(MSR_NANO_FCR2, msr);
332msr = rdmsr64(MSR_NANO_FCR2);
333printf("MSR_IA32_EBL_CR_POWERON Returns 0x%X 0x%X\n", msr >> 32, msr & 0xffffffff);
334
335
336/* get cpuid values */
337for( ; i <= 3; i++)
338{
339do_cpuid(i, p->CPU.CPUID[i]);
340}
341//int numcpuid_supported = p->CPU.CPUID[CPUID_0][0];// max number cpuid call
342//int numextcpuid = p->CPU.CPUID[CPUID_80][0];
343//p->CPU.Features = 0;
344//bitfield(p->CPU.CPUID[CPUID_1][1], 0, 0) FEATURE_C
345
346// CPUID_0 -> largest cpuid val in EAX
347// CPUID_0 -> rem = vendor string
348/*
349CPUID_1 EDX:
350 0 -> FPU
351 1 -> VME
352 2 -> DE
353 3 -> PSE
354 4 -> TSC
355 5 -> MSR
356 6 -> PAE
357 7 -> MCE
358 8 -> CX8
359 9 -> APIC
360 10 -> Reserved
361 11 -> Fast Call
362 12 -> MTTR
363 13 -> PGE
364 14 -> MCA
365 15 -> CMOV
366 16 -> PAT
367 17 -> PSE36
368 18 -> Serial Number
369 23 -> MMX
370 24 -> FXSR
371 25 -> SSE
372 */
373
374//CPUID_80 -> largest excpuid value in EAX
375//CPUID_81,EAX -> Signature
376//CPUID_80,EDX -> Ext Features
377//CPUID_82 -> CPU String
378//CPUID_83 -> CPU String
379//CPUID_84 -> CPU String
380p->CPU.NoThreads = p->CPU.NoCores;
381
382}
383
384p->CPU.Vendor= p->CPU.CPUID[CPUID_0][1];
385p->CPU.Signature= p->CPU.CPUID[CPUID_1][0];
386p->CPU.Stepping= bitfield(p->CPU.CPUID[CPUID_1][0], 3, 0);
387p->CPU.Model= bitfield(p->CPU.CPUID[CPUID_1][0], 7, 4);
388p->CPU.Family= bitfield(p->CPU.CPUID[CPUID_1][0], 11, 8);
389p->CPU.ExtModel= bitfield(p->CPU.CPUID[CPUID_1][0], 19, 16);
390p->CPU.ExtFamily= bitfield(p->CPU.CPUID[CPUID_1][0], 27, 20);
391p->CPU.NoThreads= bitfield(p->CPU.CPUID[CPUID_1][1], 23, 16);
392
393
394
395p->CPU.MaxCoef = maxcoef;
396p->CPU.MaxDiv = maxdiv;
397p->CPU.CurrCoef = currcoef;
398p->CPU.CurrDiv = currdiv;
399p->CPU.TSCFrequency = tscFrequency;
400p->CPU.FSBFrequency = fsbFrequency;
401p->CPU.CPUFrequency = cpuFrequency;
402DBG("CPU: Brand: %s\n", p->CPU.BrandString);
403DBG("CPU: Vendor/Model/ExtModel: 0x%x/0x%x/0x%x\n", p->CPU.Vendor, p->CPU.Model, p->CPU.ExtModel);
404DBG("CPU: Family/ExtFamily: 0x%x/0x%x\n", p->CPU.Family, p->CPU.ExtFamily);
405DBG("CPU: MaxCoef/CurrCoef: 0x%x/0x%x\n", p->CPU.MaxCoef, p->CPU.CurrCoef);
406DBG("CPU: MaxDiv/CurrDiv: 0x%x/0x%x\n", p->CPU.MaxDiv, p->CPU.CurrDiv);
407DBG("CPU: TSCFreq: %dMHz\n", p->CPU.TSCFrequency / 1000000);
408DBG("CPU: FSBFreq: %dMHz\n", p->CPU.FSBFrequency / 1000000);
409DBG("CPU: CPUFreq: %dMHz\n", p->CPU.CPUFrequency / 1000000);
410DBG("CPU: NoCores/NoThreads: %d/%d\n", p->CPU.NoCores, p->CPU.NoThreads);
411DBG("CPU: Features: 0x%08x\n", p->CPU.Features);
412#if DEBUG_CPU
413pause();
414#endif
415}
416

Archive Download this file

Revision: 655