/* * Copyright 2007 David F. Elliott. All rights reserved. */ #include "saio_types.h" #include "libsaio.h" #include "boot.h" #include "bootstruct.h" #include "efi.h" #include "acpi.h" #include "fake_efi.h" #include "efi_tables.h" #include "platform.h" #include "acpi_patcher.h" #include "smbios.h" #include "device_inject.h" #include "convert.h" #include "pci.h" #include "sl.h" extern void setup_pci_devs(pci_dt_t *pci_dt); /* * Modern Darwin kernels require some amount of EFI because Apple machines all * have EFI. Modifying the kernel source to not require EFI is of course * possible but would have to be maintained as a separate patch because it is * unlikely that Apple wishes to add legacy support to their kernel. * * As you can see from the Apple-supplied code in bootstruct.c, it seems that * the intention was clearly to modify this booter to provide EFI-like structures * to the kernel rather than modifying the kernel to handle non-EFI stuff. This * makes a lot of sense from an engineering point of view as it means the kernel * for the as yet unreleased EFI-only Macs could still be booted by the non-EFI * DTK systems so long as the kernel checked to ensure the boot tables were * filled in appropriately. Modern xnu requires a system table and a runtime * services table and performs no checks whatsoever to ensure the pointers to * these tables are non-NULL. Therefore, any modern xnu kernel will page fault * early on in the boot process if the system table pointer is zero. * * Even before that happens, the tsc_init function in modern xnu requires the FSB * Frequency to be a property in the /efi/platform node of the device tree or else * it panics the bootstrap process very early on. * * As of this writing, the current implementation found here is good enough * to make the currently available xnu kernel boot without modification on a * system with an appropriate processor. With a minor source modification to * the tsc_init function to remove the explicit check for Core or Core 2 * processors the kernel can be made to boot on other processors so long as * the code can be executed by the processor and the machine contains the * necessary hardware. */ /*========================================================================== * Utility function to make a device tree string from an EFI_GUID */ static inline char * mallocStringForGuid(EFI_GUID const *pGuid) { char *string = malloc(37); efi_guid_unparse_upper(pGuid, string); return string; } /*========================================================================== * Function to map 32 bit physical address to 64 bit virtual address */ static uint64_t ptov64(uint32_t addr) { return ((uint64_t)addr | 0xFFFFFF8000000000ULL); } /*========================================================================== * Fake EFI implementation */ /* Identify ourselves as the EFI firmware vendor */ static EFI_CHAR16 const FIRMWARE_VENDOR[] = {'C','h','a','m','e','l','e','o','n','_','2','.','2', 0}; // Bungo //static EFI_UINT32 const FIRMWARE_REVISION = 132; /* FIXME: Find a constant for this. */ static EFI_UINT32 const FIRMWARE_REVISION = 0x0001000a; // got from real MBP6,1 // Bungo /* Default platform system_id (fix by IntVar) static EFI_CHAR8 const SYSTEM_ID[] = "0123456789ABCDEF"; //random value gen by uuidgen */ /* Just a ret instruction */ static uint8_t const VOIDRET_INSTRUCTIONS[] = {0xc3}; /* movl $0x80000003,%eax; ret */ static uint8_t const UNSUPPORTEDRET_INSTRUCTIONS_32[] = {0xb8, 0x03, 0x00, 0x00, 0x80, 0xc3}; static uint8_t const UNSUPPORTEDRET_INSTRUCTIONS_64[] = {0x48, 0xb8, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xc3}; EFI_SYSTEM_TABLE_32 *gST32 = NULL; EFI_SYSTEM_TABLE_64 *gST64 = NULL; Node *gEfiConfigurationTableNode = NULL; // ========================================================================== extern EFI_STATUS addConfigurationTable(EFI_GUID const *pGuid, void *table, char const *alias) { EFI_UINTN i = 0; //Azi: as is, cpu's with em64t will use EFI64 on pre 10.6 systems, // wich seems to cause no problem. In case it does, force i386 arch. if (archCpuType == CPU_TYPE_I386) { i = gST32->NumberOfTableEntries; } else { i = gST64->NumberOfTableEntries; } // We only do adds, not modifications and deletes like InstallConfigurationTable if (i >= MAX_CONFIGURATION_TABLE_ENTRIES) { stop("Ran out of space for configuration tables. Increase the reserved size in the code.\n"); } if (pGuid == NULL) { return EFI_INVALID_PARAMETER; } if (table != NULL) { // FIXME //((EFI_CONFIGURATION_TABLE_64 *)gST->ConfigurationTable)[i].VendorGuid = *pGuid; //((EFI_CONFIGURATION_TABLE_64 *)gST->ConfigurationTable)[i].VendorTable = (EFI_PTR64)table; //++gST->NumberOfTableEntries; Node *tableNode = DT__AddChild(gEfiConfigurationTableNode, mallocStringForGuid(pGuid)); // Use the pointer to the GUID we just stuffed into the system table DT__AddProperty(tableNode, "guid", sizeof(EFI_GUID), (void*)pGuid); // The "table" property is the 32-bit (in our implementation) physical address of the table DT__AddProperty(tableNode, "table", sizeof(void*) * 2, table); // Assume the alias pointer is a global or static piece of data if (alias != NULL) { DT__AddProperty(tableNode, "alias", strlen(alias)+1, (char*)alias); } return EFI_SUCCESS; } return EFI_UNSUPPORTED; } // ========================================================================== //Azi: crc32 done in place, on the cases were it wasn't. /*static inline void fixupEfiSystemTableCRC32(EFI_SYSTEM_TABLE_64 *efiSystemTable) { efiSystemTable->Hdr.CRC32 = 0; efiSystemTable->Hdr.CRC32 = crc32(0L, efiSystemTable, efiSystemTable->Hdr.HeaderSize); }*/ /* * What we do here is simply allocate a fake EFI system table and a fake EFI * runtime services table. * * Because we build against modern headers with kBootArgsRevision 4 we * also take care to set efiMode = 32. */ void setupEfiTables32(void) { // We use the fake_efi_pages struct so that we only need to do one kernel // memory allocation for all needed EFI data. Otherwise, small allocations // like the FIRMWARE_VENDOR string would take up an entire page. // NOTE WELL: Do NOT assume this struct has any particular layout within itself. // It is absolutely not intended to be publicly exposed anywhere // We say pages (plural) although right now we are well within the 1 page size // and probably will stay that way. struct fake_efi_pages { EFI_SYSTEM_TABLE_32 efiSystemTable; EFI_RUNTIME_SERVICES_32 efiRuntimeServices; EFI_CONFIGURATION_TABLE_32 efiConfigurationTable[MAX_CONFIGURATION_TABLE_ENTRIES]; EFI_CHAR16 firmwareVendor[sizeof(FIRMWARE_VENDOR)/sizeof(EFI_CHAR16)]; uint8_t voidret_instructions[sizeof(VOIDRET_INSTRUCTIONS)/sizeof(uint8_t)]; uint8_t unsupportedret_instructions[sizeof(UNSUPPORTEDRET_INSTRUCTIONS_32)/sizeof(uint8_t)]; }; struct fake_efi_pages *fakeEfiPages = (struct fake_efi_pages*)AllocateKernelMemory(sizeof(struct fake_efi_pages)); // Zero out all the tables in case fields are added later //bzero(fakeEfiPages, sizeof(struct fake_efi_pages)); // -------------------------------------------------------------------- // Initialize some machine code that will return EFI_UNSUPPORTED for // functions returning int and simply return for void functions. memcpy(fakeEfiPages->voidret_instructions, VOIDRET_INSTRUCTIONS, sizeof(VOIDRET_INSTRUCTIONS)); memcpy(fakeEfiPages->unsupportedret_instructions, UNSUPPORTEDRET_INSTRUCTIONS_32, sizeof(UNSUPPORTEDRET_INSTRUCTIONS_32)); // -------------------------------------------------------------------- // System table EFI_SYSTEM_TABLE_32 *efiSystemTable = gST32 = &fakeEfiPages->efiSystemTable; efiSystemTable->Hdr.Signature = EFI_SYSTEM_TABLE_SIGNATURE; efiSystemTable->Hdr.Revision = EFI_SYSTEM_TABLE_REVISION; efiSystemTable->Hdr.HeaderSize = sizeof(EFI_SYSTEM_TABLE_32); efiSystemTable->Hdr.CRC32 = 0; // Initialize to zero and then do CRC32 efiSystemTable->Hdr.Reserved = 0; efiSystemTable->FirmwareVendor = (EFI_PTR32)&fakeEfiPages->firmwareVendor; memcpy(fakeEfiPages->firmwareVendor, FIRMWARE_VENDOR, sizeof(FIRMWARE_VENDOR)); efiSystemTable->FirmwareRevision = FIRMWARE_REVISION; // XXX: We may need to have basic implementations of ConIn/ConOut/StdErr // The EFI spec states that all handles are invalid after boot services have been // exited so we can probably get by with leaving the handles as zero. efiSystemTable->ConsoleInHandle = 0; efiSystemTable->ConIn = 0; efiSystemTable->ConsoleOutHandle = 0; efiSystemTable->ConOut = 0; efiSystemTable->StandardErrorHandle = 0; efiSystemTable->StdErr = 0; efiSystemTable->RuntimeServices = (EFI_PTR32)&fakeEfiPages->efiRuntimeServices; // According to the EFI spec, BootServices aren't valid after the // boot process is exited so we can probably do without it. // Apple didn't provide a definition for it in pexpert/i386/efi.h // so I'm guessing they don't use it. efiSystemTable->BootServices = 0; efiSystemTable->NumberOfTableEntries = 0; efiSystemTable->ConfigurationTable = (EFI_PTR32)fakeEfiPages->efiConfigurationTable; // We're done. Now CRC32 the thing so the kernel will accept it. // Must be initialized to zero before CRC32, done above. gST32->Hdr.CRC32 = crc32(0L, gST32, gST32->Hdr.HeaderSize); // -------------------------------------------------------------------- // Runtime services EFI_RUNTIME_SERVICES_32 *efiRuntimeServices = &fakeEfiPages->efiRuntimeServices; efiRuntimeServices->Hdr.Signature = EFI_RUNTIME_SERVICES_SIGNATURE; efiRuntimeServices->Hdr.Revision = EFI_RUNTIME_SERVICES_REVISION; efiRuntimeServices->Hdr.HeaderSize = sizeof(EFI_RUNTIME_SERVICES_32); efiRuntimeServices->Hdr.CRC32 = 0; efiRuntimeServices->Hdr.Reserved = 0; // There are a number of function pointers in the efiRuntimeServices table. // These are the Foundation (e.g. core) services and are expected to be present on // all EFI-compliant machines. Some kernel extensions (notably AppleEFIRuntime) // will call these without checking to see if they are null. // // We don't really feel like doing an EFI implementation in the bootloader // but it is nice if we can at least prevent a complete crash by // at least providing some sort of implementation until one can be provided // nicely in a kext. void (*voidret_fp)() = (void*)fakeEfiPages->voidret_instructions; void (*unsupportedret_fp)() = (void*)fakeEfiPages->unsupportedret_instructions; efiRuntimeServices->GetTime = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->SetTime = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->GetWakeupTime = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->SetWakeupTime = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->SetVirtualAddressMap = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->ConvertPointer = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->GetVariable = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->GetNextVariableName = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->SetVariable = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->GetNextHighMonotonicCount = (EFI_PTR32)unsupportedret_fp; efiRuntimeServices->ResetSystem = (EFI_PTR32)voidret_fp; // We're done. Now CRC32 the thing so the kernel will accept it efiRuntimeServices->Hdr.CRC32 = crc32(0L, efiRuntimeServices, efiRuntimeServices->Hdr.HeaderSize); // -------------------------------------------------------------------- // Finish filling in the rest of the boot args that we need. bootArgs->efiSystemTable = (uint32_t)efiSystemTable; bootArgs->efiMode = kBootArgsEfiMode32; // The bootArgs structure as a whole is bzero'd so we don't need to fill in // things like efiRuntimeServices* and what not. // // In fact, the only code that seems to use that is the hibernate code so it // knows not to save the pages. It even checks to make sure its nonzero. } void setupEfiTables64(void) { struct fake_efi_pages { EFI_SYSTEM_TABLE_64 efiSystemTable; EFI_RUNTIME_SERVICES_64 efiRuntimeServices; EFI_CONFIGURATION_TABLE_64 efiConfigurationTable[MAX_CONFIGURATION_TABLE_ENTRIES]; EFI_CHAR16 firmwareVendor[sizeof(FIRMWARE_VENDOR)/sizeof(EFI_CHAR16)]; uint8_t voidret_instructions[sizeof(VOIDRET_INSTRUCTIONS)/sizeof(uint8_t)]; uint8_t unsupportedret_instructions[sizeof(UNSUPPORTEDRET_INSTRUCTIONS_64)/sizeof(uint8_t)]; }; struct fake_efi_pages *fakeEfiPages = (struct fake_efi_pages*)AllocateKernelMemory(sizeof(struct fake_efi_pages)); // Zero out all the tables in case fields are added later //bzero(fakeEfiPages, sizeof(struct fake_efi_pages)); // -------------------------------------------------------------------- // Initialize some machine code that will return EFI_UNSUPPORTED for // functions returning int and simply return for void functions. memcpy(fakeEfiPages->voidret_instructions, VOIDRET_INSTRUCTIONS, sizeof(VOIDRET_INSTRUCTIONS)); memcpy(fakeEfiPages->unsupportedret_instructions, UNSUPPORTEDRET_INSTRUCTIONS_64, sizeof(UNSUPPORTEDRET_INSTRUCTIONS_64)); // -------------------------------------------------------------------- // System table EFI_SYSTEM_TABLE_64 *efiSystemTable = gST64 = &fakeEfiPages->efiSystemTable; efiSystemTable->Hdr.Signature = EFI_SYSTEM_TABLE_SIGNATURE; efiSystemTable->Hdr.Revision = EFI_SYSTEM_TABLE_REVISION; efiSystemTable->Hdr.HeaderSize = sizeof(EFI_SYSTEM_TABLE_64); efiSystemTable->Hdr.CRC32 = 0; // Initialize to zero and then do CRC32 efiSystemTable->Hdr.Reserved = 0; efiSystemTable->FirmwareVendor = ptov64((EFI_PTR32)&fakeEfiPages->firmwareVendor); memcpy(fakeEfiPages->firmwareVendor, FIRMWARE_VENDOR, sizeof(FIRMWARE_VENDOR)); efiSystemTable->FirmwareRevision = FIRMWARE_REVISION; // XXX: We may need to have basic implementations of ConIn/ConOut/StdErr // The EFI spec states that all handles are invalid after boot services have been // exited so we can probably get by with leaving the handles as zero. efiSystemTable->ConsoleInHandle = 0; efiSystemTable->ConIn = 0; efiSystemTable->ConsoleOutHandle = 0; efiSystemTable->ConOut = 0; efiSystemTable->StandardErrorHandle = 0; efiSystemTable->StdErr = 0; efiSystemTable->RuntimeServices = ptov64((EFI_PTR32)&fakeEfiPages->efiRuntimeServices); // According to the EFI spec, BootServices aren't valid after the // boot process is exited so we can probably do without it. // Apple didn't provide a definition for it in pexpert/i386/efi.h // so I'm guessing they don't use it. efiSystemTable->BootServices = 0; efiSystemTable->NumberOfTableEntries = 0; efiSystemTable->ConfigurationTable = ptov64((EFI_PTR32)fakeEfiPages->efiConfigurationTable); // We're done. Now CRC32 the thing so the kernel will accept it gST64->Hdr.CRC32 = crc32(0L, gST64, gST64->Hdr.HeaderSize); // -------------------------------------------------------------------- // Runtime services EFI_RUNTIME_SERVICES_64 *efiRuntimeServices = &fakeEfiPages->efiRuntimeServices; efiRuntimeServices->Hdr.Signature = EFI_RUNTIME_SERVICES_SIGNATURE; efiRuntimeServices->Hdr.Revision = EFI_RUNTIME_SERVICES_REVISION; efiRuntimeServices->Hdr.HeaderSize = sizeof(EFI_RUNTIME_SERVICES_64); efiRuntimeServices->Hdr.CRC32 = 0; efiRuntimeServices->Hdr.Reserved = 0; // There are a number of function pointers in the efiRuntimeServices table. // These are the Foundation (e.g. core) services and are expected to be present on // all EFI-compliant machines. Some kernel extensions (notably AppleEFIRuntime) // will call these without checking to see if they are null. // // We don't really feel like doing an EFI implementation in the bootloader // but it is nice if we can at least prevent a complete crash by // at least providing some sort of implementation until one can be provided // nicely in a kext. void (*voidret_fp)() = (void*)fakeEfiPages->voidret_instructions; void (*unsupportedret_fp)() = (void*)fakeEfiPages->unsupportedret_instructions; efiRuntimeServices->GetTime = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->SetTime = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->GetWakeupTime = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->SetWakeupTime = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->SetVirtualAddressMap = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->ConvertPointer = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->GetVariable = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->GetNextVariableName = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->SetVariable = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->GetNextHighMonotonicCount = ptov64((EFI_PTR32)unsupportedret_fp); efiRuntimeServices->ResetSystem = ptov64((EFI_PTR32)voidret_fp); // We're done. Now CRC32 the thing so the kernel will accept it efiRuntimeServices->Hdr.CRC32 = crc32(0L, efiRuntimeServices, efiRuntimeServices->Hdr.HeaderSize); // -------------------------------------------------------------------- // Finish filling in the rest of the boot args that we need. bootArgs->efiSystemTable = (uint32_t)efiSystemTable; bootArgs->efiMode = kBootArgsEfiMode64; // The bootArgs structure as a whole is bzero'd so we don't need to fill in // things like efiRuntimeServices* and what not. // // In fact, the only code that seems to use that is the hibernate code so it // knows not to save the pages. It even checks to make sure its nonzero. } /* * In addition to the EFI tables there is also the EFI device tree node. * In particular, we need /efi/platform to have an FSBFrequency key. Without it, * the tsc_init function will panic very early on in kernel startup, before * the console is available. */ /*========================================================================== * FSB Frequency detection */ /* These should be const but DT__AddProperty takes char* */ static const char TSC_Frequency_prop[] = "TSCFrequency"; static const char FSB_Frequency_prop[] = "FSBFrequency"; static const char CPU_Frequency_prop[] = "CPUFrequency"; /*========================================================================== * SMBIOS */ /* From Foundation/Efi/Guid/Smbios/SmBios.c */ EFI_GUID const gEfiSmbiosTableGuid = EFI_SMBIOS_TABLE_GUID; #define SMBIOS_RANGE_START 0x000F0000 #define SMBIOS_RANGE_END 0x000FFFFF /* '_SM_' in little endian: */ #define SMBIOS_ANCHOR_UINT32_LE 0x5f4d535f #define EFI_ACPI_TABLE_GUID \ { \ 0xeb9d2d30, 0x2d88, 0x11d3, { 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d } \ } #define EFI_ACPI_20_TABLE_GUID \ { \ 0x8868e871, 0xe4f1, 0x11d3, { 0xbc, 0x22, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81 } \ } EFI_GUID gEfiAcpiTableGuid = EFI_ACPI_TABLE_GUID; EFI_GUID gEfiAcpi20TableGuid = EFI_ACPI_20_TABLE_GUID; /*========================================================================== * Fake EFI implementation */ /* These should be const but DT__AddProperty takes char* */ static const char FIRMWARE_REVISION_PROP[] = "firmware-revision"; static const char FIRMWARE_ABI_PROP[] = "firmware-abi"; static const char FIRMWARE_VENDOR_PROP[] = "firmware-vendor"; //static const char FIRMWARE_ABI_32_PROP_VALUE[] = "EFI32"; static const char FIRMWARE_ABI_64_PROP_VALUE[] = "EFI64"; static const char EFI_MODE_PROP[] = "efi-mode"; //Bungo static const char SYSTEM_ID_PROP[] = "system-id"; static const char SYSTEM_SERIAL_PROP[] = "SystemSerialNumber"; static const char SYSTEM_TYPE_PROP[] = "system-type"; static const char MODEL_PROP[] = "Model"; static const char BOARDID_PROP[] = "board-id"; static const char DEV_PATH_SUP[] = "DevicePathsSupported"; static EFI_UINT32 DevPathSup = 1; static EFI_UINT32 MachineSig = 0; //Bungo /* * Get an smbios option string option to convert to EFI_CHAR16 string */ static EFI_CHAR16* getSmbiosChar16(const char * key, size_t* len) { const char *src = getStringForKey(key, &bootInfo->smbiosConfig); EFI_CHAR16* dst = 0; size_t i = 0; if (!key || !(*key) || !len || !src) { return 0; } *len = strlen(src); dst = (EFI_CHAR16*) malloc( ((*len)+1) * 2 ); for (; i < (*len); i++) { dst[i] = src[i]; } dst[(*len)] = '\0'; *len = ((*len)+1)*2; // return the CHAR16 bufsize including zero terminated CHAR16 return dst; } // Bungo /* * Get the SystemID from the bios dmi info static EFI_CHAR8* getSmbiosUUID() { static EFI_CHAR8 uuid[UUID_LEN]; int i, isZero, isOnes; SMBByte *p; p = (SMBByte*)Platform.UUID; for (i=0, isZero=1, isOnes=1; ichameleonConfig); EFI_CHAR8* ret = getUUIDFromString(sysId); if (!sysId || !ret) // try bios dmi info UUID extraction { ret = getSmbiosUUID(); sysId = 0; } if (!ret) { // no bios dmi UUID available, set a fixed value for system-id ret=getUUIDFromString((sysId = (const char*) SYSTEM_ID)); } verbose("Customizing SystemID with : %s\n", getStringFromUUID(ret)); // apply a nice formatting to the displayed output return ret; } */ /* * Must be called AFTER setup Acpi because we need to take care of correct * facp content to reflect in ioregs */ void setupSystemType() { Node *node = DT__FindNode("/", false); if (node == 0) { stop("Couldn't get root node"); } // we need to write this property after facp parsing // Export system-type only if it has been overrriden by the SystemType option DT__AddProperty(node, SYSTEM_TYPE_PROP, sizeof(Platform.Type), &Platform.Type); } void setupEfiDeviceTree(void) { // EFI_CHAR8* ret = 0; Bungo: not used EFI_CHAR16* ret16 = 0; size_t len = 0; Node *node; node = DT__FindNode("/", false); if (node == 0) { stop("Couldn't get root node"); } // We could also just do DT__FindNode("/efi/platform", true) // But I think eventually we want to fill stuff in the efi node // too so we might as well create it so we have a pointer for it too. node = DT__AddChild(node, "efi"); /* Bungo if (archCpuType == CPU_TYPE_I386) { DT__AddProperty(node, FIRMWARE_ABI_PROP, sizeof(FIRMWARE_ABI_32_PROP_VALUE), (char*)FIRMWARE_ABI_32_PROP_VALUE); } else { */ DT__AddProperty(node, FIRMWARE_ABI_PROP, sizeof(FIRMWARE_ABI_64_PROP_VALUE), (char *)FIRMWARE_ABI_64_PROP_VALUE); // } DT__AddProperty(node, EFI_MODE_PROP, sizeof(EFI_UINT8), (EFI_UINT8 *)&bootArgs->efiMode); DT__AddProperty(node, FIRMWARE_REVISION_PROP, sizeof(FIRMWARE_REVISION), (EFI_UINT32*)&FIRMWARE_REVISION); DT__AddProperty(node, FIRMWARE_VENDOR_PROP, sizeof(FIRMWARE_VENDOR), (EFI_CHAR16*)FIRMWARE_VENDOR); // TODO: Fill in other efi properties if necessary // Set up the /efi/runtime-services table node similar to the way a child node of configuration-table // is set up. That is, name and table properties Node *runtimeServicesNode = DT__AddChild(node, "runtime-services"); if (archCpuType == CPU_TYPE_I386) { // The value of the table property is the 32-bit physical address for the RuntimeServices table. // Since the EFI system table already has a pointer to it, we simply use the address of that pointer // for the pointer to the property data. Warning.. DT finalization calls free on that but we're not // the only thing to use a non-malloc'd pointer for something in the DT DT__AddProperty(runtimeServicesNode, "table", sizeof(uint64_t), &gST32->RuntimeServices); } else { DT__AddProperty(runtimeServicesNode, "table", sizeof(uint64_t), &gST64->RuntimeServices); } // Set up the /efi/configuration-table node which will eventually have several child nodes for // all of the configuration tables needed by various kernel extensions. gEfiConfigurationTableNode = DT__AddChild(node, "configuration-table"); // New node: /efi/kernel-compatibility Node *efiKernelComNode = DT__AddChild(node, "kernel-compatibility"); len = 1; DT__AddProperty(efiKernelComNode, "x86_64", sizeof(uint32_t), (EFI_UINT32 *)&len); // Now fill in the /efi/platform Node Node *efiPlatformNode = DT__AddChild(node, "platform"); // NOTE WELL: If you do add FSB Frequency detection, make sure to store // the value in the fsbFrequency global and not an malloc'd pointer // because the DT_AddProperty function does not copy its args. if (Platform.CPU.FSBFrequency != 0) { DT__AddProperty(efiPlatformNode, FSB_Frequency_prop, sizeof(uint64_t), &Platform.CPU.FSBFrequency); } // Export TSC and CPU frequencies for use by the kernel or KEXTs if (Platform.CPU.TSCFrequency != 0) { DT__AddProperty(efiPlatformNode, TSC_Frequency_prop, sizeof(uint64_t), &Platform.CPU.TSCFrequency); } if (Platform.CPU.CPUFrequency != 0) { DT__AddProperty(efiPlatformNode, CPU_Frequency_prop, sizeof(uint64_t), &Platform.CPU.CPUFrequency); } DT__AddProperty(efiPlatformNode,DEV_PATH_SUP, sizeof(EFI_UINT32), &DevPathSup); // Bungo /* Export system-id. Can be disabled with SystemId=No in com.apple.Boot.plist if ((ret=getSystemID())) { DT__AddProperty(efiPlatformNode, SYSTEM_ID_PROP, UUID_LEN, (EFI_UINT32*) ret); } */ DT__AddProperty(efiPlatformNode, SYSTEM_ID_PROP, UUID_LEN, (EFI_UINT32 *)Platform.UUID); // Export SystemSerialNumber if present if ((ret16=getSmbiosChar16("SMserial", &len))) { DT__AddProperty(efiPlatformNode, SYSTEM_SERIAL_PROP, len, ret16); } // Export Model if present if ((ret16=getSmbiosChar16("SMproductname", &len))) { DT__AddProperty(efiPlatformNode, MODEL_PROP, len, ret16); } // Fill /efi/device-properties node. setupDeviceProperties(node); } /* * Must be called AFTER getSmbios */ void setupBoardId() { Node *node; node = DT__FindNode("/", false); if (node == 0) { stop("Couldn't get root node"); } const char *boardid = getStringForKey("SMboardproduct", &bootInfo->smbiosConfig); if (boardid) { DT__AddProperty(node, BOARDID_PROP, strlen(boardid)+1, (EFI_CHAR16*)boardid); } } /* * Populate the chosen node */ void setupChosenNode() { Node *chosenNode; chosenNode = DT__FindNode("/chosen", false); static EFI_UINT8 const RANDOM_SEED[] = { 0x40, 0x00, 0x50, 0x00, 0x5c, 0x00, 0x53, 0x00, 0x79, 0x00, 0x73, 0x00, 0x74, 0x00, 0x65, 0x00, 0x6d, 0x00, 0x5c, 0x00, 0x4c, 0x00, 0x69, 0x00, 0x62, 0x00, 0x72, 0x00, 0x61, 0x00, 0x72, 0x00, 0x79, 0x00, 0x5c, 0x00, 0x43, 0x00, 0x6f, 0x00, 0x72, 0x00, 0x65, 0x00, 0x53, 0x00, 0x65, 0x00, 0x72, 0x00, 0x76, 0x00, 0x69, 0x00, 0x63, 0x00, 0x65, 0x00, 0x73, 0x00, 0x5c, 0x00, 0x62, 0x00 }; DT__AddProperty(chosenNode, "random-seed", sizeof(RANDOM_SEED), (EFI_UINT8*) &RANDOM_SEED); if (chosenNode == 0) { stop("Couldn't get chosen node"); } int length = strlen(gBootUUIDString); if (length) { DT__AddProperty(chosenNode, "boot-uuid", length + 1, gBootUUIDString); } length = strlen(bootArgs->CommandLine); DT__AddProperty(chosenNode, "boot-args", length + 1, bootArgs->CommandLine); length = strlen(bootInfo->bootFile); DT__AddProperty(chosenNode, "boot-file", length + 1, bootInfo->bootFile); DT__AddProperty(chosenNode, "machine-signature", sizeof(EFI_UINT32), (EFI_UINT32 *)&MachineSig); } /* * Load the smbios.plist override config file if any */ static void setupSmbiosConfigFile(const char *filename) { char dirSpecSMBIOS[128]; const char *override_pathname = NULL; int len = 0, err = 0; extern void scan_mem(); // Take in account user overriding if (getValueForKey(kSMBIOSKey, &override_pathname, &len, &bootInfo->chameleonConfig) && len > 0) { // Specify a path to a file, e.g. SMBIOS=/Extra/macProXY.plist sprintf(dirSpecSMBIOS, override_pathname); err = loadConfigFile(dirSpecSMBIOS, &bootInfo->smbiosConfig); } else { // Check selected volume's Extra. sprintf(dirSpecSMBIOS, "/Extra/%s", filename); if ( (err = loadConfigFile(dirSpecSMBIOS, &bootInfo->smbiosConfig)) ) { // Check booter volume/rdbt Extra. sprintf(dirSpecSMBIOS, "bt(0,0)/Extra/%s", filename); err = loadConfigFile(dirSpecSMBIOS, &bootInfo->smbiosConfig); } } if (err) { verbose("No SMBIOS replacement found.\n"); } // get a chance to scan mem dynamically if user asks for it while having the config options // loaded as well, as opposed to when it was in scan_platform(); also load the orig. smbios // so that we can access dmi info, without patching the smbios yet. scan_mem(); } /* * Installs all the needed configuration table entries */ static void setupEfiConfigurationTable() { smbios_p = (EFI_PTR32)getSmbios(SMBIOS_PATCHED); addConfigurationTable(&gEfiSmbiosTableGuid, &smbios_p, NULL); setupBoardId(); //need to be called after getSmbios // Setup ACPI with DSDT overrides (mackerintel's patch) setupAcpi(); // We've obviously changed the count.. so fix up the CRC32 if (archCpuType == CPU_TYPE_I386) { gST32->Hdr.CRC32 = 0; gST32->Hdr.CRC32 = crc32(0L, gST32, gST32->Hdr.HeaderSize); } else { gST64->Hdr.CRC32 = 0; gST64->Hdr.CRC32 = crc32(0L, gST64, gST64->Hdr.HeaderSize); } // Setup the chosen node setupChosenNode(); } void saveOriginalSMBIOS(void) { Node *node; SMBEntryPoint *origeps; void *tableAddress; node = DT__FindNode("/efi/platform", false); if (!node) { verbose("/efi/platform node not found\n"); return; } origeps = getSmbios(SMBIOS_ORIGINAL); if (!origeps) { return; } tableAddress = (void *)AllocateKernelMemory(origeps->dmi.tableLength); if (!tableAddress) { return; } memcpy(tableAddress, (void *)origeps->dmi.tableAddress, origeps->dmi.tableLength); DT__AddProperty(node, "SMBIOS", origeps->dmi.tableLength, tableAddress); } /* * Entrypoint from boot.c */ void setupFakeEfi(void) { // Generate efi device strings setup_pci_devs(root_pci_dev); readSMBIOSInfo(getSmbios(SMBIOS_ORIGINAL)); // load smbios.plist file if any setupSmbiosConfigFile("smbios.plist"); setupSMBIOSTable(); // Initialize the base table if (archCpuType == CPU_TYPE_I386) { setupEfiTables32(); } else { setupEfiTables64(); } // Initialize the device tree setupEfiDeviceTree(); saveOriginalSMBIOS(); // Add configuration table entries to both the services table and the device tree setupEfiConfigurationTable(); }