/* * Copyright 2008 mackerintel */ #include "libsaio.h" #include "boot.h" #include "bootstruct.h" #include "acpi.h" #include "efi_tables.h" #include "fake_efi.h" #include "acpi_patcher.h" #include "platform.h" #include "cpu.h" #include "aml_generator.h" #ifndef DEBUG_ACPI #define DEBUG_ACPI 0 #endif #if DEBUG_ACPI==2 #define DBG(x...) {printf(x); sleep(1);} #elif DEBUG_ACPI==1 #define DBG(x...) printf(x) #else #define DBG(x...) #endif // Slice: New signature compare function boolean_t tableSign(char *table, const char *sgn) { int i; for (i=0; i<4; i++) { if ((table[i] &~0x20) != (sgn[i] &~0x20)) { return false; } } return true; } /* Gets the ACPI 1.0 RSDP address */ static struct acpi_2_rsdp* getAddressOfAcpiTable() { /* TODO: Before searching the BIOS space we are supposed to search the first 1K of the EBDA */ void *acpi_addr = (void*)ACPI_RANGE_START; for(; acpi_addr <= (void*)ACPI_RANGE_END; acpi_addr += 16) { if(*(uint64_t *)acpi_addr == ACPI_SIGNATURE_UINT64_LE) { uint8_t csum = checksum8(acpi_addr, 20); if(csum == 0) { // Only return the table if it is a true version 1.0 table (Revision 0) if(((struct acpi_2_rsdp*)acpi_addr)->Revision == 0) return acpi_addr; } } } return NULL; } /* Gets the ACPI 2.0 RSDP address */ static struct acpi_2_rsdp* getAddressOfAcpi20Table() { /* TODO: Before searching the BIOS space we are supposed to search the first 1K of the EBDA */ void *acpi_addr = (void*)ACPI_RANGE_START; for(; acpi_addr <= (void*)ACPI_RANGE_END; acpi_addr += 16) { if(*(uint64_t *)acpi_addr == ACPI_SIGNATURE_UINT64_LE) { uint8_t csum = checksum8(acpi_addr, 20); /* Only assume this is a 2.0 or better table if the revision is greater than 0 * NOTE: ACPI 3.0 spec only seems to say that 1.0 tables have revision 1 * and that the current revision is 2.. I am going to assume that rev > 0 is 2.0. */ if(csum == 0 && (((struct acpi_2_rsdp*)acpi_addr)->Revision > 0)) { uint8_t csum2 = checksum8(acpi_addr, sizeof(struct acpi_2_rsdp)); if(csum2 == 0) return acpi_addr; } } } return NULL; } /** The folowing ACPI Table search algo. should be reused anywhere needed:*/ int search_and_get_acpi_fd(const char * filename, const char ** outDirspec) { int fd = 0; char dirSpec[512] = ""; // Try finding 'filename' in the usual places // Start searching any potential location for ACPI Table sprintf(dirSpec, "%s", filename); fd = open(dirSpec, 0); if (fd < 0) { sprintf(dirSpec, "/Extra/%s", filename); fd = open(dirSpec, 0); if (fd < 0) { sprintf(dirSpec, "bt(0,0)/Extra/%s", filename); fd = open(dirSpec, 0); } } if (fd < 0) { // NOT FOUND: verbose("ACPI table not found: %s\n", filename); *dirSpec = '\0'; } if (outDirspec) *outDirspec = dirSpec; return fd; } void *loadACPITable (const char * filename) { void *tableAddr; const char * dirspec=NULL; int fd = search_and_get_acpi_fd(filename, &dirspec); if (fd>=0) { tableAddr=(void*)AllocateKernelMemory(file_size (fd)); if (tableAddr) { if (read (fd, tableAddr, file_size (fd))!=file_size (fd)) { printf("Couldn't read table %s\n",dirspec); free (tableAddr); close (fd); return NULL; } DBG("Table %s read and stored at: %x\n", dirspec, tableAddr); close (fd); return tableAddr; } close (fd); printf("Couldn't allocate memory for table \n", dirspec); } //printf("Couldn't find table %s\n", filename); return NULL; } uint8_t acpi_cpu_count = 0; char* acpi_cpu_name[32]; void get_acpi_cpu_names(unsigned char* dsdt, uint32_t length) { uint32_t i; for (i=0; i> 6); bool add_name = true; uint8_t j; for (j=0; j<4; j++) { char c = dsdt[offset+j]; if (!aml_isvalidchar(c)) { add_name = false; verbose("Invalid character found in ProcessorOP 0x%x!\n", c); break; } } if (add_name) { acpi_cpu_name[acpi_cpu_count] = malloc(4); memcpy(acpi_cpu_name[acpi_cpu_count], dsdt+offset, 4); i = offset + 5; verbose("Found ACPI CPU: %c%c%c%c\n", acpi_cpu_name[acpi_cpu_count][0], acpi_cpu_name[acpi_cpu_count][1], acpi_cpu_name[acpi_cpu_count][2], acpi_cpu_name[acpi_cpu_count][3]); if (++acpi_cpu_count == 32) return; } } } } struct acpi_2_ssdt *generate_cst_ssdt(struct acpi_2_fadt* fadt) { char ssdt_header[] = { 0x53, 0x53, 0x44, 0x54, 0xE7, 0x00, 0x00, 0x00, /* SSDT.... */ 0x01, 0x17, 0x50, 0x6D, 0x52, 0x65, 0x66, 0x41, /* ..PmRefA */ 0x43, 0x70, 0x75, 0x43, 0x73, 0x74, 0x00, 0x00, /* CpuCst.. */ 0x00, 0x10, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* ....INTL */ 0x31, 0x03, 0x10, 0x20 /* 1.._ */ }; char cstate_resource_template[] = { 0x11, 0x14, 0x0A, 0x11, 0x82, 0x0C, 0x00, 0x7F, 0x01, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x00 }; if (Platform.CPU.Vendor != 0x756E6547) { verbose ("Not an Intel platform: C-States will not be generated !!!\n"); return NULL; } if (fadt == NULL) { verbose ("FACP not exists: C-States will not be generated !!!\n"); return NULL; } struct acpi_2_dsdt* dsdt = (void*)fadt->DSDT; if (dsdt == NULL) { verbose ("DSDT not found: C-States will not be generated !!!\n"); return NULL; } if (acpi_cpu_count == 0) get_acpi_cpu_names((void*)dsdt, dsdt->Length); if (acpi_cpu_count > 0) { bool c2_enabled = false; bool c3_enabled = false; bool c4_enabled = false; getBoolForKey(kEnableC2States, &c2_enabled, &bootInfo->bootConfig); getBoolForKey(kEnableC3States, &c3_enabled, &bootInfo->bootConfig); getBoolForKey(kEnableC4States, &c4_enabled, &bootInfo->bootConfig); c2_enabled = c2_enabled | (fadt->C2_Latency < 100); c3_enabled = c3_enabled | (fadt->C3_Latency < 1000); unsigned char cstates_count = 1 + (c2_enabled ? 1 : 0) + (c3_enabled ? 1 : 0); struct aml_chunk* root = aml_create_node(NULL); aml_add_buffer(root, ssdt_header, sizeof(ssdt_header)); // SSDT header struct aml_chunk* scop = aml_add_scope(root, "\\_PR_"); struct aml_chunk* name = aml_add_name(scop, "CST_"); struct aml_chunk* pack = aml_add_package(name); aml_add_byte(pack, cstates_count); struct aml_chunk* tmpl = aml_add_package(pack); cstate_resource_template[11] = 0x00; // C1 aml_add_buffer(tmpl, cstate_resource_template, sizeof(cstate_resource_template)); aml_add_byte(tmpl, 0x01); // C1 aml_add_byte(tmpl, 0x01); // Latency aml_add_word(tmpl, 0x03e8); // Power // C2 if (c2_enabled) { tmpl = aml_add_package(pack); cstate_resource_template[11] = 0x10; // C2 aml_add_buffer(tmpl, cstate_resource_template, sizeof(cstate_resource_template)); aml_add_byte(tmpl, 0x02); // C2 aml_add_byte(tmpl, fadt->C2_Latency); aml_add_word(tmpl, 0x01f4); // Power } // C4 if (c4_enabled) { tmpl = aml_add_package(pack); cstate_resource_template[11] = 0x30; // C4 aml_add_buffer(tmpl, cstate_resource_template, sizeof(cstate_resource_template)); aml_add_byte(tmpl, 0x04); // C4 aml_add_word(tmpl, fadt->C3_Latency / 2); // TODO: right latency for C4 aml_add_byte(tmpl, 0xfa); // Power } else // C3 if (c3_enabled) { tmpl = aml_add_package(pack); cstate_resource_template[11] = 0x20; // C3 aml_add_buffer(tmpl, cstate_resource_template, sizeof(cstate_resource_template)); aml_add_byte(tmpl, 0x03); // C3 aml_add_word(tmpl, fadt->C3_Latency); aml_add_word(tmpl, 0x015e); // Power } // Aliaces int i; for (i = 0; i < acpi_cpu_count; i++) { char name[9]; sprintf(name, "_PR_%c%c%c%c", acpi_cpu_name[i][0], acpi_cpu_name[i][1], acpi_cpu_name[i][2], acpi_cpu_name[i][3]); scop = aml_add_scope(root, name); aml_add_alias(scop, "CST_", "_CST"); } aml_calculate_size(root); struct acpi_2_ssdt *ssdt = (struct acpi_2_ssdt *)AllocateKernelMemory(root->Size); aml_write_node(root, (void*)ssdt, 0); ssdt->Length = root->Size; ssdt->Checksum = 0; ssdt->Checksum = 256 - checksum8(ssdt, ssdt->Length); aml_destroy_node(root); //dumpPhysAddr("C-States SSDT content: ", ssdt, ssdt->Length); verbose ("SSDT with CPU C-States generated successfully\n"); return ssdt; } else { verbose ("ACPI CPUs not found: C-States not generated !!!\n"); } return NULL; } struct acpi_2_ssdt *generate_pss_ssdt(struct acpi_2_dsdt* dsdt) { char ssdt_header[] = { 0x53, 0x53, 0x44, 0x54, 0x7E, 0x00, 0x00, 0x00, /* SSDT.... */ 0x01, 0x6A, 0x50, 0x6D, 0x52, 0x65, 0x66, 0x00, /* ..PmRef. */ 0x43, 0x70, 0x75, 0x50, 0x6D, 0x00, 0x00, 0x00, /* CpuPm... */ 0x00, 0x30, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* .0..INTL */ 0x31, 0x03, 0x10, 0x20, /* 1.._ */ }; if (Platform.CPU.Vendor != 0x756E6547) { verbose ("Not an Intel platform: P-States will not be generated !!!\n"); return NULL; } if (!(Platform.CPU.Features & CPU_FEATURE_MSR)) { verbose ("Unsupported CPU: P-States will not be generated !!!\n"); return NULL; } if (acpi_cpu_count == 0) get_acpi_cpu_names((void*)dsdt, dsdt->Length); if (acpi_cpu_count > 0) { struct p_state initial, maximum, minimum, p_states[32]; uint8_t p_states_count = 0; // Retrieving P-States, ported from code by superhai (c) switch (Platform.CPU.Family) { case 0x06: { switch (Platform.CPU.Model) { case 0x0D: // ? case CPU_MODEL_YONAH: // Yonah case CPU_MODEL_MEROM: // Merom case CPU_MODEL_PENRYN: // Penryn case CPU_MODEL_ATOM: // Intel Atom (45nm) { bool cpu_dynamic_fsb = false; if (rdmsr64(MSR_IA32_EXT_CONFIG) & (1 << 27)) { wrmsr64(MSR_IA32_EXT_CONFIG, (rdmsr64(MSR_IA32_EXT_CONFIG) | (1 << 28))); delay(1); cpu_dynamic_fsb = rdmsr64(MSR_IA32_EXT_CONFIG) & (1 << 28); } bool cpu_noninteger_bus_ratio = (rdmsr64(MSR_IA32_PERF_STATUS) & (1ULL << 46)); initial.Control = rdmsr64(MSR_IA32_PERF_STATUS); maximum.Control = ((rdmsr64(MSR_IA32_PERF_STATUS) >> 32) & 0x1F3F) | (0x4000 * cpu_noninteger_bus_ratio); maximum.CID = ((maximum.FID & 0x1F) << 1) | cpu_noninteger_bus_ratio; minimum.FID = ((rdmsr64(MSR_IA32_PERF_STATUS) >> 24) & 0x1F) | (0x80 * cpu_dynamic_fsb); minimum.VID = ((rdmsr64(MSR_IA32_PERF_STATUS) >> 48) & 0x3F); if (minimum.FID == 0) { uint64_t msr; uint8_t i; // Probe for lowest fid for (i = maximum.FID; i >= 0x6; i--) { msr = rdmsr64(MSR_IA32_PERF_CONTROL); wrmsr64(MSR_IA32_PERF_CONTROL, (msr & 0xFFFFFFFFFFFF0000ULL) | (i << 8) | minimum.VID); intel_waitforsts(); minimum.FID = (rdmsr64(MSR_IA32_PERF_STATUS) >> 8) & 0x1F; delay(1); } msr = rdmsr64(MSR_IA32_PERF_CONTROL); wrmsr64(MSR_IA32_PERF_CONTROL, (msr & 0xFFFFFFFFFFFF0000ULL) | (maximum.FID << 8) | maximum.VID); intel_waitforsts(); } if (minimum.VID == maximum.VID) { uint64_t msr; uint8_t i; // Probe for lowest vid for (i = maximum.VID; i > 0xA; i--) { msr = rdmsr64(MSR_IA32_PERF_CONTROL); wrmsr64(MSR_IA32_PERF_CONTROL, (msr & 0xFFFFFFFFFFFF0000ULL) | (minimum.FID << 8) | i); intel_waitforsts(); minimum.VID = rdmsr64(MSR_IA32_PERF_STATUS) & 0x3F; delay(1); } msr = rdmsr64(MSR_IA32_PERF_CONTROL); wrmsr64(MSR_IA32_PERF_CONTROL, (msr & 0xFFFFFFFFFFFF0000ULL) | (maximum.FID << 8) | maximum.VID); intel_waitforsts(); } minimum.CID = ((minimum.FID & 0x1F) << 1) >> cpu_dynamic_fsb; // Sanity check if (maximum.CID < minimum.CID) { DBG("Insane FID values!"); p_states_count = 0; } else { // Finalize P-States // Find how many P-States machine supports p_states_count = maximum.CID - minimum.CID + 1; if (p_states_count > 32) p_states_count = 32; uint8_t vidstep; uint8_t i = 0, u, invalid = 0; vidstep = ((maximum.VID << 2) - (minimum.VID << 2)) / (p_states_count - 1); for (u = 0; u < p_states_count; u++) { i = u - invalid; p_states[i].CID = maximum.CID - u; p_states[i].FID = (p_states[i].CID >> 1); if (p_states[i].FID < 0x6) { if (cpu_dynamic_fsb) p_states[i].FID = (p_states[i].FID << 1) | 0x80; } else if (cpu_noninteger_bus_ratio) { p_states[i].FID = p_states[i].FID | (0x40 * (p_states[i].CID & 0x1)); } if (i && p_states[i].FID == p_states[i-1].FID) invalid++; p_states[i].VID = ((maximum.VID << 2) - (vidstep * u)) >> 2; uint32_t multiplier = p_states[i].FID & 0x1f; // = 0x08 bool half = p_states[i].FID & 0x40; // = 0x01 bool dfsb = p_states[i].FID & 0x80; // = 0x00 uint32_t fsb = Platform.CPU.FSBFrequency / 1000000; // = 400 uint32_t halffsb = (fsb + 1) >> 1; // = 200 uint32_t frequency = (multiplier * fsb); // = 3200 p_states[i].Frequency = (frequency + (half * halffsb)) >> dfsb; // = 3200 + 200 = 3400 } p_states_count -= invalid; } break; } case CPU_MODEL_FIELDS: case CPU_MODEL_DALES: case CPU_MODEL_DALES_32NM: case CPU_MODEL_NEHALEM: case CPU_MODEL_NEHALEM_EX: case CPU_MODEL_WESTMERE: case CPU_MODEL_WESTMERE_EX: { maximum.Control = rdmsr64(MSR_IA32_PERF_STATUS) & 0xff; // Seems it always contains maximum multiplier value (with turbo, that's we need)... minimum.Control = (rdmsr64(MSR_PLATFORM_INFO) >> 40) & 0xff; verbose("P-States: min 0x%x, max 0x%x\n", minimum.Control, maximum.Control); // Sanity check if (maximum.Control < minimum.Control) { DBG("Insane control values!"); p_states_count = 0; } else { uint8_t i; p_states_count = 0; for (i = maximum.Control; i >= minimum.Control; i--) { p_states[p_states_count].Control = i; p_states[p_states_count].CID = p_states[p_states_count].Control << 1; p_states[p_states_count].Frequency = (Platform.CPU.FSBFrequency / 1000000) * i; p_states_count++; } } break; } default: verbose ("Unsupported CPU: P-States not generated !!!\n"); break; } } } // Generating SSDT if (p_states_count > 0) { int i; struct aml_chunk* root = aml_create_node(NULL); aml_add_buffer(root, ssdt_header, sizeof(ssdt_header)); // SSDT header struct aml_chunk* scop = aml_add_scope(root, "\\_PR_"); struct aml_chunk* name = aml_add_name(scop, "PSS_"); struct aml_chunk* pack = aml_add_package(name); for (i = 0; i < p_states_count; i++) { struct aml_chunk* pstt = aml_add_package(pack); aml_add_dword(pstt, p_states[i].Frequency); aml_add_dword(pstt, 0x00000000); // Power aml_add_dword(pstt, 0x0000000A); // Latency aml_add_dword(pstt, 0x0000000A); // Latency aml_add_dword(pstt, p_states[i].Control); aml_add_dword(pstt, i+1); // Status } // Add aliaces for (i = 0; i < acpi_cpu_count; i++) { char name[9]; sprintf(name, "_PR_%c%c%c%c", acpi_cpu_name[i][0], acpi_cpu_name[i][1], acpi_cpu_name[i][2], acpi_cpu_name[i][3]); scop = aml_add_scope(root, name); aml_add_alias(scop, "PSS_", "_PSS"); } aml_calculate_size(root); struct acpi_2_ssdt *ssdt = (struct acpi_2_ssdt *)AllocateKernelMemory(root->Size); aml_write_node(root, (void*)ssdt, 0); ssdt->Length = root->Size; ssdt->Checksum = 0; ssdt->Checksum = 256 - checksum8(ssdt, ssdt->Length); aml_destroy_node(root); //dumpPhysAddr("P-States SSDT content: ", ssdt, ssdt->Length); verbose ("SSDT with CPU P-States generated successfully\n"); return ssdt; } } else { verbose ("ACPI CPUs not found: P-States not generated !!!\n"); } return NULL; } struct acpi_2_fadt *patch_fadt(struct acpi_2_fadt *fadt, struct acpi_2_dsdt *new_dsdt) { extern void setupSystemType(); struct acpi_2_fadt *fadt_mod; bool fadt_rev2_needed = false; bool fix_restart; const char * value; // Restart Fix if (Platform.CPU.Vendor == 0x756E6547) { /* Intel */ fix_restart = true; getBoolForKey(kRestartFix, &fix_restart, &bootInfo->bootConfig); } else { verbose ("Not an Intel platform: Restart Fix not applied !!!\n"); fix_restart = false; } if (fix_restart) fadt_rev2_needed = true; // Allocate new fadt table if (fadt->Length < 0x84 && fadt_rev2_needed) { fadt_mod=(struct acpi_2_fadt *)AllocateKernelMemory(0x84); memcpy(fadt_mod, fadt, fadt->Length); fadt_mod->Length = 0x84; fadt_mod->Revision = 0x02; // FADT rev 2 (ACPI 1.0B MS extensions) } else { fadt_mod=(struct acpi_2_fadt *)AllocateKernelMemory(fadt->Length); memcpy(fadt_mod, fadt, fadt->Length); } // Determine system type / PM_Model if ( (value=getStringForKey(kSystemType, &bootInfo->bootConfig))!=NULL) { if (Platform.Type > 6) { if(fadt_mod->PM_Profile<=6) Platform.Type = fadt_mod->PM_Profile; // get the fadt if correct else Platform.Type = 1; /* Set a fixed value (Desktop) */ verbose("Error: system-type must be 0..6. Defaulting to %d !\n", Platform.Type); } else Platform.Type = (unsigned char) strtoul(value, NULL, 10); } // Set PM_Profile from System-type if only user wanted this value to be forced if (fadt_mod->PM_Profile != Platform.Type) { if (value) { // user has overriden the SystemType so take care of it in FACP verbose("FADT: changing PM_Profile from 0x%02x to 0x%02x\n", fadt_mod->PM_Profile, Platform.Type); fadt_mod->PM_Profile = Platform.Type; } else { // PM_Profile has a different value and no override has been set, so reflect the user value to ioregs Platform.Type = fadt_mod->PM_Profile <= 6 ? fadt_mod->PM_Profile : 1; } } // We now have to write the systemm-type in ioregs: we cannot do it before in setupDeviceTree() // because we need to take care of facp original content, if it is correct. setupSystemType(); // Patch FADT to fix restart if (fix_restart) { fadt_mod->Flags|= 0x400; fadt_mod->Reset_SpaceID = 0x01; // System I/O fadt_mod->Reset_BitWidth = 0x08; // 1 byte fadt_mod->Reset_BitOffset = 0x00; // Offset 0 fadt_mod->Reset_AccessWidth = 0x01; // Byte access fadt_mod->Reset_Address = 0x0cf9; // Address of the register fadt_mod->Reset_Value = 0x06; // Value to write to reset the system verbose("FADT: Restart Fix applied!\n"); } // Patch DSDT Address if we have loaded DSDT.aml if(new_dsdt) { DBG("DSDT: Old @%x,%x, ",fadt_mod->DSDT,fadt_mod->X_DSDT); fadt_mod->DSDT=(uint32_t)new_dsdt; if ((uint32_t)(&(fadt_mod->X_DSDT))-(uint32_t)fadt_mod+8<=fadt_mod->Length) fadt_mod->X_DSDT=(uint32_t)new_dsdt; DBG("New @%x,%x\n",fadt_mod->DSDT,fadt_mod->X_DSDT); verbose("FADT: Using custom DSDT!\n"); } // Correct the checksum fadt_mod->Checksum=0; fadt_mod->Checksum=256-checksum8(fadt_mod,fadt_mod->Length); return fadt_mod; } /* Setup ACPI without replacing DSDT. */ int setupAcpiNoMod() { // addConfigurationTable(&gEfiAcpiTableGuid, getAddressOfAcpiTable(), "ACPI"); // addConfigurationTable(&gEfiAcpi20TableGuid, getAddressOfAcpi20Table(), "ACPI_20"); /* XXX aserebln why uint32 cast if pointer is uint64 ? */ acpi10_p = (uint32_t)getAddressOfAcpiTable(); acpi20_p = (uint32_t)getAddressOfAcpi20Table(); addConfigurationTable(&gEfiAcpiTableGuid, &acpi10_p, "ACPI"); if(acpi20_p) addConfigurationTable(&gEfiAcpi20TableGuid, &acpi20_p, "ACPI_20"); return 1; } /* Setup ACPI. Replace DSDT if DSDT.aml is found */ int setupAcpi(void) { int version; void *new_dsdt; const char *filename; char dirSpec[128]; int len = 0; // Try using the file specified with the DSDT option if (getValueForKey(kDSDT, &filename, &len, &bootInfo->bootConfig)) { sprintf(dirSpec, filename); } else { sprintf(dirSpec, "DSDT.aml"); } // Load replacement DSDT new_dsdt = loadACPITable(dirSpec); // Mozodojo: going to patch FACP and load SSDT's even if DSDT.aml is not present /*if (!new_dsdt) { return setupAcpiNoMod(); }*/ // Mozodojo: Load additional SSDTs struct acpi_2_ssdt *new_ssdt[32]; // 30 + 2 additional tables for pss & cst int ssdt_count=0; // SSDT Options bool drop_ssdt=false, generate_pstates=false, generate_cstates=false; getBoolForKey(kDropSSDT, &drop_ssdt, &bootInfo->bootConfig); getBoolForKey(kGeneratePStates, &generate_pstates, &bootInfo->bootConfig); getBoolForKey(kGenerateCStates, &generate_cstates, &bootInfo->bootConfig); { int i; for (i=0; i<30; i++) { char filename[512]; sprintf(filename, i>0?"SSDT-%d.aml":"SSDT.aml", i); if(new_ssdt[ssdt_count] = loadACPITable(filename)) { ssdt_count++; } else { break; } } } // Do the same procedure for both versions of ACPI for (version=0; version<2; version++) { struct acpi_2_rsdp *rsdp, *rsdp_mod; struct acpi_2_rsdt *rsdt, *rsdt_mod; int rsdplength; // Find original rsdp rsdp=(struct acpi_2_rsdp *)(version?getAddressOfAcpi20Table():getAddressOfAcpiTable()); if (!rsdp) { DBG("No ACPI version %d found. Ignoring\n", version+1); if (version) addConfigurationTable(&gEfiAcpi20TableGuid, NULL, "ACPI_20"); else addConfigurationTable(&gEfiAcpiTableGuid, NULL, "ACPI"); continue; } rsdplength=version?rsdp->Length:20; DBG("RSDP version %d found @%x. Length=%d\n",version+1,rsdp,rsdplength); /* FIXME: no check that memory allocation succeeded * Copy and patch RSDP,RSDT, XSDT and FADT * For more info see ACPI Specification pages 110 and following */ rsdp_mod=(struct acpi_2_rsdp *) AllocateKernelMemory(rsdplength); memcpy(rsdp_mod, rsdp, rsdplength); rsdt=(struct acpi_2_rsdt *)(rsdp->RsdtAddress); DBG("RSDT @%x, Length %d\n",rsdt, rsdt->Length); if (rsdt && (uint32_t)rsdt !=0xffffffff && rsdt->Length<0x10000) { uint32_t *rsdt_entries; int rsdt_entries_num; int dropoffset=0, i; // mozo: using malloc cos I didn't found how to free already allocated kernel memory rsdt_mod=(struct acpi_2_rsdt *)malloc(rsdt->Length); memcpy (rsdt_mod, rsdt, rsdt->Length); rsdp_mod->RsdtAddress=(uint32_t)rsdt_mod; rsdt_entries_num=(rsdt_mod->Length-sizeof(struct acpi_2_rsdt))/4; rsdt_entries=(uint32_t *)(rsdt_mod+1); for (i=0;iLength); if (!fadt || (uint32_t)fadt == 0xffffffff || fadt->Length>0x10000) { printf("FADT incorrect. Not modified\n"); continue; } fadt_mod = patch_fadt(fadt, new_dsdt); rsdt_entries[i-dropoffset]=(uint32_t)fadt_mod; // Generate _CST SSDT if (generate_cstates && (new_ssdt[ssdt_count] = generate_cst_ssdt(fadt_mod))) { generate_cstates = false; // Generate SSDT only once! ssdt_count++; } // Generating _PSS SSDT if (generate_pstates && (new_ssdt[ssdt_count] = generate_pss_ssdt((void*)fadt_mod->DSDT))) { generate_pstates = false; // Generate SSDT only once! ssdt_count++; } continue; } } DBG("\n"); // Allocate rsdt in Kernel memory area rsdt_mod->Length += 4*ssdt_count - 4*dropoffset; struct acpi_2_rsdt *rsdt_copy = (struct acpi_2_rsdt *)AllocateKernelMemory(rsdt_mod->Length); memcpy (rsdt_copy, rsdt_mod, rsdt_mod->Length); free(rsdt_mod); rsdt_mod = rsdt_copy; rsdp_mod->RsdtAddress=(uint32_t)rsdt_mod; rsdt_entries_num=(rsdt_mod->Length-sizeof(struct acpi_2_rsdt))/4; rsdt_entries=(uint32_t *)(rsdt_mod+1); // Mozodojo: Insert additional SSDTs into RSDT if(ssdt_count>0) { int j; for (j=0; jChecksum); rsdt_mod->Checksum=0; rsdt_mod->Checksum=256-checksum8(rsdt_mod,rsdt_mod->Length); DBG("New checksum %d at %x\n", rsdt_mod->Checksum,rsdt_mod); } else { rsdp_mod->RsdtAddress=0; printf("RSDT not found or RSDT incorrect\n"); } if (version) { struct acpi_2_xsdt *xsdt, *xsdt_mod; // FIXME: handle 64-bit address correctly xsdt=(struct acpi_2_xsdt*) ((uint32_t)rsdp->XsdtAddress); DBG("XSDT @%x;%x, Length=%d\n", (uint32_t)(rsdp->XsdtAddress>>32),(uint32_t)rsdp->XsdtAddress, xsdt->Length); if (xsdt && (uint64_t)rsdp->XsdtAddress<0xffffffff && xsdt->Length<0x10000) { uint64_t *xsdt_entries; int xsdt_entries_num, i; int dropoffset=0; // mozo: using malloc cos I didn't found how to free already allocated kernel memory xsdt_mod=(struct acpi_2_xsdt*)malloc(xsdt->Length); memcpy(xsdt_mod, xsdt, xsdt->Length); rsdp_mod->XsdtAddress=(uint32_t)xsdt_mod; xsdt_entries_num=(xsdt_mod->Length-sizeof(struct acpi_2_xsdt))/8; xsdt_entries=(uint64_t *)(xsdt_mod+1); for (i=0;i>32),fadt, fadt->Length); if (!fadt || (uint64_t)xsdt_entries[i] >= 0xffffffff || fadt->Length>0x10000) { verbose("FADT incorrect or after 4GB. Dropping XSDT\n"); goto drop_xsdt; } fadt_mod = patch_fadt(fadt, new_dsdt); xsdt_entries[i-dropoffset]=(uint32_t)fadt_mod; DBG("TABLE %c%c%c%c@%x,",table[0],table[1],table[2],table[3],xsdt_entries[i]); // Generate _CST SSDT if (generate_cstates && (new_ssdt[ssdt_count] = generate_cst_ssdt(fadt_mod))) { generate_cstates = false; // Generate SSDT only once! ssdt_count++; } // Generating _PSS SSDT if (generate_pstates && (new_ssdt[ssdt_count] = generate_pss_ssdt((void*)fadt_mod->DSDT))) { generate_pstates = false; // Generate SSDT only once! ssdt_count++; } continue; } DBG("TABLE %c%c%c%c@%x,",table[0],table[1],table[2],table[3],xsdt_entries[i]); } // Allocate xsdt in Kernel memory area xsdt_mod->Length += 8*ssdt_count - 8*dropoffset; struct acpi_2_xsdt *xsdt_copy = (struct acpi_2_xsdt *)AllocateKernelMemory(xsdt_mod->Length); memcpy(xsdt_copy, xsdt_mod, xsdt_mod->Length); free(xsdt_mod); xsdt_mod = xsdt_copy; rsdp_mod->XsdtAddress=(uint32_t)xsdt_mod; xsdt_entries_num=(xsdt_mod->Length-sizeof(struct acpi_2_xsdt))/8; xsdt_entries=(uint64_t *)(xsdt_mod+1); // Mozodojo: Insert additional SSDTs into XSDT if(ssdt_count>0) { int j; for (j=0; jChecksum=0; xsdt_mod->Checksum=256-checksum8(xsdt_mod,xsdt_mod->Length); } else { drop_xsdt: DBG("About to drop XSDT\n"); /*FIXME: Now we just hope that if MacOS doesn't find XSDT it reverts to RSDT. * A Better strategy would be to generate */ rsdp_mod->XsdtAddress=0xffffffffffffffffLL; verbose("XSDT not found or XSDT incorrect\n"); } } // Correct the checksum of RSDP DBG("RSDP: Original checksum %d, ", rsdp_mod->Checksum); rsdp_mod->Checksum=0; rsdp_mod->Checksum=256-checksum8(rsdp_mod,20); DBG("New checksum %d\n", rsdp_mod->Checksum); if (version) { DBG("RSDP: Original extended checksum %d", rsdp_mod->ExtendedChecksum); rsdp_mod->ExtendedChecksum=0; rsdp_mod->ExtendedChecksum=256-checksum8(rsdp_mod,rsdp_mod->Length); DBG("New extended checksum %d\n", rsdp_mod->ExtendedChecksum); } //verbose("Patched ACPI version %d DSDT\n", version+1); if (version) { /* XXX aserebln why uint32 cast if pointer is uint64 ? */ acpi20_p = (uint32_t)rsdp_mod; addConfigurationTable(&gEfiAcpi20TableGuid, &acpi20_p, "ACPI_20"); } else { /* XXX aserebln why uint32 cast if pointer is uint64 ? */ acpi10_p = (uint32_t)rsdp_mod; addConfigurationTable(&gEfiAcpiTableGuid, &acpi10_p, "ACPI"); } } #if DEBUG_ACPI printf("Press a key to continue... (DEBUG_ACPI)\n"); getc(); #endif return 1; }