/* * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * MD5.C - RSA Data Security, Inc., MD5 message-digest algorithm * * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * This code is the same as the code published by RSA Inc. It has been * edited for clarity and style only. */ #include "libsa.h" #include "md5.h" #define memset(x, y, z) bzero(x, z); #define memcpy(x, y, z) bcopy(y, x, z) /* * The digest algorithm interprets the input message as a sequence of 32-bit * little-endian words. We must reverse bytes in each word on PPC and other * big-endian platforms, but not on little-endian ones. When we can, we try * to load each word at once. We don't quite care about alignment, since * x86/x64 allows us to do 4-byte loads on non 4-byte aligned addresses, * and on PPC we do 1-byte loads anyway. * * We could check against __LITLE_ENDIAN__ to generalize the 4-byte load * optimization, but that might not tell us whether or not we need 4-byte * aligned loads. Since we know that __i386__ and __x86_64__ are the two * little-endian architectures that are not alignment-restrictive, we check * explicitly against them below. Note that the byte-reversing code for * big-endian will still work on little-endian, albeit much slower. */ #if defined(__i386__) || defined(__x86_64__) #define FETCH_32(p) (*(const u_int32_t *)(p)) #else #define FETCH_32(p) \ (((u_int32_t)*((const u_int8_t *)(p))) | \ (((u_int32_t)*((const u_int8_t *)(p) + 1)) << 8) | \ (((u_int32_t)*((const u_int8_t *)(p) + 2)) << 16) | \ (((u_int32_t)*((const u_int8_t *)(p) + 3)) << 24)) #endif /* __i386__ || __x86_64__ */ /* * Encodes input (u_int32_t) into output (unsigned char). Assumes len is * a multiple of 4. This is not compatible with memcpy(). */ static void Encode(unsigned char *output, u_int32_t *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { #if defined(__i386__) || defined(__x86_64__) *(u_int32_t *)(output + j) = input[i]; #else output[j] = input[i] & 0xff; output[j + 1] = (input[i] >> 8) & 0xff; output[j + 2] = (input[i] >> 16) & 0xff; output[j + 3] = (input[i] >> 24) & 0xff; #endif /* __i386__ || __x86_64__ */ } } static unsigned char PADDING[64] = { 0x80, /* zeros */ }; /* F, G, H and I are basic MD5 functions. */ #define F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z)) #define G(x, y, z) ((((x) ^ (y)) & (z)) ^ (y)) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) (((~(z)) | (x)) ^ (y)) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) /* * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F((b), (c), (d)) + (x) + (unsigned long long)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G((b), (c), (d)) + (x) + (unsigned long long)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H((b), (c), (d)) + (x) + (unsigned long long)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I((b), (c), (d)) + (x) + (unsigned long long)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } static void MD5Transform(u_int32_t, u_int32_t, u_int32_t, u_int32_t, const u_int8_t [64], MD5_CTX *); /* * MD5 initialization. Begins an MD5 operation, writing a new context. */ void MD5Init(MD5_CTX *context) { context->count[0] = context->count[1] = 0; /* Load magic initialization constants. */ context->state[0] = 0x67452301UL; context->state[1] = 0xefcdab89UL; context->state[2] = 0x98badcfeUL; context->state[3] = 0x10325476UL; } /* * MD5 block update operation. Continues an MD5 message-digest * operation, processing another message block, and updating the * context. */ void MD5Update(MD5_CTX *context, const void *inpp, unsigned int inputLen) { u_int32_t i, index, partLen; const unsigned char *input = (const unsigned char *)inpp; /* Compute number of bytes mod 64 */ index = (context->count[0] >> 3) & 0x3F; /* Update number of bits */ if ((context->count[0] += (inputLen << 3)) < (inputLen << 3)) context->count[1]++; context->count[1] += (inputLen >> 29); partLen = 64 - index; /* Transform as many times as possible. */ i = 0; if (inputLen >= partLen) { if (index != 0) { memcpy(&context->buffer[index], input, partLen); MD5Transform(context->state[0], context->state[1], context->state[2], context->state[3], context->buffer, context); i = partLen; } for (; i + 63 < inputLen; i += 64) MD5Transform(context->state[0], context->state[1], context->state[2], context->state[3], &input[i], context); if (inputLen == i) return; index = 0; } /* Buffer remaining input */ memcpy(&context->buffer[index], &input[i], inputLen - i); } /* * MD5 finalization. Ends an MD5 message-digest operation, writing the * the message digest and zeroizing the context. */ void MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *context) { unsigned char bits[8]; u_int32_t index = (context->count[0] >> 3) & 0x3f; /* Save number of bits */ Encode(bits, context->count, 8); /* Pad out to 56 mod 64. */ MD5Update(context, PADDING, ((index < 56) ? 56 : 120) - index); /* Append length (before padding) */ MD5Update(context, bits, 8); /* Store state in digest */ Encode(digest, context->state, 16); /* Zeroize sensitive information. */ memset(context, 0, sizeof (*context)); } /* * MD5 basic transformation. Transforms state based on block. */ static void MD5Transform(u_int32_t a, u_int32_t b, u_int32_t c, u_int32_t d, const u_int8_t block[64], MD5_CTX *context) { /* Register (instead of array) is a win in most cases */ register u_int32_t x0, x1, x2, x3, x4, x5, x6, x7; register u_int32_t x8, x9, x10, x11, x12, x13, x14, x15; x15 = FETCH_32(block + 60); x14 = FETCH_32(block + 56); x13 = FETCH_32(block + 52); x12 = FETCH_32(block + 48); x11 = FETCH_32(block + 44); x10 = FETCH_32(block + 40); x9 = FETCH_32(block + 36); x8 = FETCH_32(block + 32); x7 = FETCH_32(block + 28); x6 = FETCH_32(block + 24); x5 = FETCH_32(block + 20); x4 = FETCH_32(block + 16); x3 = FETCH_32(block + 12); x2 = FETCH_32(block + 8); x1 = FETCH_32(block + 4); x0 = FETCH_32(block + 0); /* Round 1 */ #define S11 7 #define S12 12 #define S13 17 #define S14 22 FF(a, b, c, d, x0, S11, 0xd76aa478UL); /* 1 */ FF(d, a, b, c, x1, S12, 0xe8c7b756UL); /* 2 */ FF(c, d, a, b, x2, S13, 0x242070dbUL); /* 3 */ FF(b, c, d, a, x3, S14, 0xc1bdceeeUL); /* 4 */ FF(a, b, c, d, x4, S11, 0xf57c0fafUL); /* 5 */ FF(d, a, b, c, x5, S12, 0x4787c62aUL); /* 6 */ FF(c, d, a, b, x6, S13, 0xa8304613UL); /* 7 */ FF(b, c, d, a, x7, S14, 0xfd469501UL); /* 8 */ FF(a, b, c, d, x8, S11, 0x698098d8UL); /* 9 */ FF(d, a, b, c, x9, S12, 0x8b44f7afUL); /* 10 */ FF(c, d, a, b, x10, S13, 0xffff5bb1UL); /* 11 */ FF(b, c, d, a, x11, S14, 0x895cd7beUL); /* 12 */ FF(a, b, c, d, x12, S11, 0x6b901122UL); /* 13 */ FF(d, a, b, c, x13, S12, 0xfd987193UL); /* 14 */ FF(c, d, a, b, x14, S13, 0xa679438eUL); /* 15 */ FF(b, c, d, a, x15, S14, 0x49b40821UL); /* 16 */ /* Round 2 */ #define S21 5 #define S22 9 #define S23 14 #define S24 20 GG(a, b, c, d, x1, S21, 0xf61e2562UL); /* 17 */ GG(d, a, b, c, x6, S22, 0xc040b340UL); /* 18 */ GG(c, d, a, b, x11, S23, 0x265e5a51UL); /* 19 */ GG(b, c, d, a, x0, S24, 0xe9b6c7aaUL); /* 20 */ GG(a, b, c, d, x5, S21, 0xd62f105dUL); /* 21 */ GG(d, a, b, c, x10, S22, 0x02441453UL); /* 22 */ GG(c, d, a, b, x15, S23, 0xd8a1e681UL); /* 23 */ GG(b, c, d, a, x4, S24, 0xe7d3fbc8UL); /* 24 */ GG(a, b, c, d, x9, S21, 0x21e1cde6UL); /* 25 */ GG(d, a, b, c, x14, S22, 0xc33707d6UL); /* 26 */ GG(c, d, a, b, x3, S23, 0xf4d50d87UL); /* 27 */ GG(b, c, d, a, x8, S24, 0x455a14edUL); /* 28 */ GG(a, b, c, d, x13, S21, 0xa9e3e905UL); /* 29 */ GG(d, a, b, c, x2, S22, 0xfcefa3f8UL); /* 30 */ GG(c, d, a, b, x7, S23, 0x676f02d9UL); /* 31 */ GG(b, c, d, a, x12, S24, 0x8d2a4c8aUL); /* 32 */ /* Round 3 */ #define S31 4 #define S32 11 #define S33 16 #define S34 23 HH(a, b, c, d, x5, S31, 0xfffa3942UL); /* 33 */ HH(d, a, b, c, x8, S32, 0x8771f681UL); /* 34 */ HH(c, d, a, b, x11, S33, 0x6d9d6122UL); /* 35 */ HH(b, c, d, a, x14, S34, 0xfde5380cUL); /* 36 */ HH(a, b, c, d, x1, S31, 0xa4beea44UL); /* 37 */ HH(d, a, b, c, x4, S32, 0x4bdecfa9UL); /* 38 */ HH(c, d, a, b, x7, S33, 0xf6bb4b60UL); /* 39 */ HH(b, c, d, a, x10, S34, 0xbebfbc70UL); /* 40 */ HH(a, b, c, d, x13, S31, 0x289b7ec6UL); /* 41 */ HH(d, a, b, c, x0, S32, 0xeaa127faUL); /* 42 */ HH(c, d, a, b, x3, S33, 0xd4ef3085UL); /* 43 */ HH(b, c, d, a, x6, S34, 0x04881d05UL); /* 44 */ HH(a, b, c, d, x9, S31, 0xd9d4d039UL); /* 45 */ HH(d, a, b, c, x12, S32, 0xe6db99e5UL); /* 46 */ HH(c, d, a, b, x15, S33, 0x1fa27cf8UL); /* 47 */ HH(b, c, d, a, x2, S34, 0xc4ac5665UL); /* 48 */ /* Round 4 */ #define S41 6 #define S42 10 #define S43 15 #define S44 21 II(a, b, c, d, x0, S41, 0xf4292244UL); /* 49 */ II(d, a, b, c, x7, S42, 0x432aff97UL); /* 50 */ II(c, d, a, b, x14, S43, 0xab9423a7UL); /* 51 */ II(b, c, d, a, x5, S44, 0xfc93a039UL); /* 52 */ II(a, b, c, d, x12, S41, 0x655b59c3UL); /* 53 */ II(d, a, b, c, x3, S42, 0x8f0ccc92UL); /* 54 */ II(c, d, a, b, x10, S43, 0xffeff47dUL); /* 55 */ II(b, c, d, a, x1, S44, 0x85845dd1UL); /* 56 */ II(a, b, c, d, x8, S41, 0x6fa87e4fUL); /* 57 */ II(d, a, b, c, x15, S42, 0xfe2ce6e0UL); /* 58 */ II(c, d, a, b, x6, S43, 0xa3014314UL); /* 59 */ II(b, c, d, a, x13, S44, 0x4e0811a1UL); /* 60 */ II(a, b, c, d, x4, S41, 0xf7537e82UL); /* 61 */ II(d, a, b, c, x11, S42, 0xbd3af235UL); /* 62 */ II(c, d, a, b, x2, S43, 0x2ad7d2bbUL); /* 63 */ II(b, c, d, a, x9, S44, 0xeb86d391UL); /* 64 */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; /* Zeroize sensitive information. */ x15 = x14 = x13 = x12 = x11 = x10 = x9 = x8 = 0; x7 = x6 = x5 = x4 = x3 = x2 = x1 = x0 = 0; /* Silent a warning reported by the clang static analizer . */ (void)x0;(void)x1;(void)x2;(void)x3;(void)x4;(void)x5;(void)x6;(void)x7; (void)x8;(void)x9;(void)x10;(void)x11;(void)x12;(void)x13;(void)x14;(void)x15; }